A novel potential oscillation in situ removal method: preparation of ion imprinted 8-HQ/PPy film for the selective separation of zinc ions

  • Mimi Liu
  • Xiao DuEmail author
  • Fengfeng Gao
  • Jinhua Luo
  • Qiang Wang
  • Feifan Liu
  • Lutong Chang
  • Xiaogang HaoEmail author
Original Paper


The zinc ion–imprinted 8-hydroxyquinoline/polypyrrole (8-HQ/PPy) composite film is successfully prepared by using the unipolar pulse electropolymerization (UPEP) method on the carbon cloth substrate. Based on the electrochemically switched ion exchange (ESIX) method, the ion-imprinted film is used to selectively separate zinc ions in the aqueous solution. The zinc ion adsorption kinetics is studied in a batch experiment due to the specific recognition of the ion-imprinted composite film toward zinc ion. The kinetics data of zinc ion adsorption by the imprinted composite film fits well with the pseudo-first-order kinetic model. As a result, when the adsorption potential and initial concentration are − 1.2 V and 25 ppm, respectively, the ion exchange capacity of the imprinted composite film for zinc ions reaches 145.6 mg g−1. In addition, the separation factor (α) are 2.6 and 2.3 of the imprinted composite film for Zn2+ compared with Co2+ and Ni2+, which is attributed to the specific recognition ability of the imprinted composite film for zinc ions. It is expected that the imprinted composite film prepared by the described method can be used for the separation target metal ions.


Zinc ions Ion-imprinted Polypyrrole 8-Hydroxyquinoline Selective separation 


Funding information

This work was financially supported by the National Natural Science Foundation of China (Nos. 21776191, 21706181) and the International Science & Technology Cooperation Program of China (grant number SQ2017YFGH001900).

Supplementary material

10008_2019_4305_MOESM1_ESM.docx (1.1 mb)
ESM 1 (DOCX 1119 kb)


  1. 1.
    Zare EN, Motahari A, Sillanpaa M (2018) Environ Res 162:173–195Google Scholar
  2. 2.
    Pirveysian M, Ghiaci M (2018) Appl Surf Sci 428:98–109Google Scholar
  3. 3.
    Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) ChemBioEng Rev 4(1):37–59Google Scholar
  4. 4.
    Ye C-C, An Q-F, Wu J-K, Zhao F-Y, Zheng P-Y, Wang N-X (2019) Chem Eng J 359:994–1005Google Scholar
  5. 5.
    Gao FF, Du X, Hao XG, Li SS, An XW, Liu MM, Han NC, Wang TH, Guan GQ (2017) Chem Eng J 328:293–303Google Scholar
  6. 6.
    Babilas D, Dydo P (2018) Sep Purif Technol 192:419–428Google Scholar
  7. 7.
    Ali S, Rehman SAU, Shah IA, Farid MU, An AK, Huang HO (2019) J Hazard Mater 365:64–73Google Scholar
  8. 8.
    Ahmed M, Mitha A, Chen P (2019) J Energy Storage 21:481–488Google Scholar
  9. 9.
    Polizos G, Stehle YY, Sharma J, Voylov D, Vlassiouk I, Shin S, Meyer HM (2019) Adv Eng Mater 21(3):1800949Google Scholar
  10. 10.
    Song L, Wang T, Li LH, Wu C, He JP (2019) Appl Catal B Environ 244:197–205Google Scholar
  11. 11.
    Bajat JB, Stanković S, Jokić BM (2008) J Solid State Electrochem 13:755–762Google Scholar
  12. 12.
    Boiadjieva T, Monev M, Tomandl A, Kronberger H, Fafilek G (2008) J Solid State Electrochem 13:671–677Google Scholar
  13. 13.
    Li MC, Xin SS, Wu MY (2010) J Solid State Electrochem 14(12):2235–2240Google Scholar
  14. 14.
    Prasad BE, Kamath PV, Ranganath S (2012) J Solid State Electrochem 16(12):3715–3722Google Scholar
  15. 15.
    Mekatel H, Amokrane S, Benturki A, Nibou D (2012) Procedia Eng 33:52–57Google Scholar
  16. 16.
    Gong J-L, Wang B, Zeng G-M, Yang C-P, Niu C-G, Niu Q-Y, Zhou W-J, Liang Y (2009) J Hazard Mater 164(2-3):1517–1522Google Scholar
  17. 17.
    Hao XG, Li YG, Pritzker M (2008) Sep Purif Technol 63(2):407–414Google Scholar
  18. 18.
    Karnjanakom S, Ma YF, Guan GQ, Phanthong P, Hao XG, Du X, Samart C, Abudula A (2014) Electrochim Acta 139:36–41Google Scholar
  19. 19.
    Sun B, Hao XG, Wang ZD, Guan GQ, Zhang ZL, Li YB, Liu SB (2012) J Hazard Mater 233-234:177–183Google Scholar
  20. 20.
    Liao SL, Xue CF, Wang YH, Zheng JL, Hao XG, Guan GQ, Abuliti A, Zhang H, Ma GZ (2015) Sep Purif Technol 139:63–69Google Scholar
  21. 21.
    Priya T, Dhanalakshmi N, Karthikeyan V, Thinakaran N (2019) J Electroanal Chem 833:543–551Google Scholar
  22. 22.
    Yuan GY, Tu H, Li M, Liu J, Zhao CS, Liao JL, Yang YY, Yang JJ, Liu N (2019) Appl Surf Sci 466:903–910Google Scholar
  23. 23.
    Du X, Hao XG, Wang ZD, Guan GQ (2016) J Mater Chem A 4(17):6236–6258Google Scholar
  24. 24.
    Zhang PL, Zheng JL, Wang ZD, Du X, Gao FF, Hao XG, Guan GQ, Li CC, Liu SB (2016) Ind Eng Chem Res 55(21):6194–6203Google Scholar
  25. 25.
    Oularbi L, Turmine M, El Rhazi M (2017) J Solid State Electrochem 21(11):3289–3300Google Scholar
  26. 26.
    Wang MJ, Yan WJ, Kong W, Wu ZJ, An XW, Wang ZD, Hao XG, Guan GQ (2017) Ind Eng Chem Res 56:12738–12744Google Scholar
  27. 27.
    Zhang Q, Du X, Ma XL, Hao XG, Guan GQ, Wang ZD, Xue CF, Zhang ZL, Zuo ZJ (2015) J Hazard Mater 289:91–100Google Scholar
  28. 28.
    Luo XB, Deng F, Min LJ, Luo SL, Guo B, Zeng GS, Au CT (2013) Environ Sci Technol 47(13):7404–7412Google Scholar
  29. 29.
    Singh DK, Mishra S (2010) Appl Surf Sci 256(24):7632–7637Google Scholar
  30. 30.
    Du X, Zhang H, Hao XG, Guan GQ, Abudula A (2014) ACS Appl Mater Interfaces 6(12):9543–9549Google Scholar
  31. 31.
    Vatanpour V, Madaeni SS, Zinadini S, Rajabi HR (2011) J Membr Sci 373(1-2):36–42Google Scholar
  32. 32.
    Arbab-Zavar MH, Chamsaz M, Zohuri G, Darroudi A (2011) J Hazard Mater 185(1):38–43Google Scholar
  33. 33.
    He PY, Zhu HJ, Ma Y, Liu N, Niu XH, Wei MB, Pan JM (2019) Chem Eng J 367:55–63Google Scholar
  34. 34.
    Wang LY, Li JH, Wang JN, Guo XT, Wang XY, Choo J, Chen LX (2019) J Colloid Interface Sci 541:376–386Google Scholar
  35. 35.
    Abdullah BA, Talpur FN, Kumar A, Shah MT, Mahar AM (2019) Amina. Microchem J 146:1160–1168Google Scholar
  36. 36.
    Hao XG, Yan T, Wang ZD, Liu SB, Liang ZH, Shen YH, Pritzker M (2012) Thin Solid Films 520(7):2438–2448Google Scholar
  37. 37.
    Li Y, Zhao K, Du X, Wang ZD, Hao XG, Liu SB, Guan GQ (2012) Synth Met 162(1-2):107–113Google Scholar
  38. 38.
    Wang ZD, Hao XG, Zhang ZL, Liu SB, Liang ZH, Guan GQ (2012) Sensors Actuators B Chem 162(1):353–360Google Scholar
  39. 39.
    Du X, Sun XL, Zhang H, Wang ZD, Hao XG, Guan GQ, Abudula A (2015) Electrochim Acta 176:1313–1323Google Scholar
  40. 40.
    Zhao JC, Han B, Zhang YF, Wang DD (2007) Anal Chim Acta 603(1):87–92Google Scholar
  41. 41.
    Kosa SA, Al-Zhrani G, Abdel Salam M (2012) Chem Eng J 181-182:159–168Google Scholar
  42. 42.
    El-Desoky HS, Ismail IM, Ghoneim MM (2013) J Solid State Electrochem 17(12):3153–3167Google Scholar
  43. 43.
    Mahmoud ME, Mohamed AK (2018) J Ind Eng Chem 63:220–229Google Scholar
  44. 44.
    Lu ZN, Wang L, Zhang X, Zhu ZJ (2019) Spectrochim Acta A 213:57–63Google Scholar
  45. 45.
    Al-Riyahee AAA, Horton PN, Coles SJ, Amoroso AJ, Pope SJA (2019) Polyhedron 157:396–405Google Scholar
  46. 46.
    Du X, Hao XG, Wang ZD, Ma XL, Guan GQ, Abuliti A, Ma GZ, Liu SB (2013) Synth Met 175:138–145Google Scholar
  47. 47.
    Wang QS, Zhang YF, Hu T, Jing XY, Meng CG (2017) Microporous Mesoporous Mater 246:102–113Google Scholar
  48. 48.
    Apetrei IM, Apetrei C (2016) Sensors Actuators B Chem 234:371–379Google Scholar
  49. 49.
    Dubal DP, Chodankar NR, Caban-Huertas Z, Wolfart F, Vidotti M, Holze R, Lokhande CD, Gomez-Romero P (2016) J Power Sources 308:158–165Google Scholar
  50. 50.
    Zhang BL, Du X, Hao XG, Gao FF, Zhang D, Liu CL, Guan GQ (2018) J Solid State Electrochem 22(8):2473–2483Google Scholar
  51. 51.
    Gao FF, Du X, Hao XG, Li SS, Zheng JL, Yang YY, Han NC, Guan GQ (2017) J Membr Sci 535:20–27Google Scholar
  52. 52.
    Yang YY, Du X, An XW, Ding SQ, Liu FF, Zhang ZL, Ma XL, Hao XG, Guan GQ, Zhang H (2018) J Colloid Interface Sci 523:159–168Google Scholar
  53. 53.
    Li X, Wu Y, Zhang C, Liu YG, Zeng GM, Tang XQ, Dai LH, Lan SM (2016) Chem Eng J 306:393–400Google Scholar
  54. 54.
    Morozov IG, Belousova OV, Ortega D, Mafina MK, Kuznetcov MV (2015) J Alloys Compd 633:237–245Google Scholar
  55. 55.
    Xia C, Guo J, Lei YJ, Liang HF, Zhao C, Alshareef HN (2018) Adv Mater 30(5):1705580Google Scholar
  56. 56.
    Du RF, Zhang YH, Li BY, Yu XL, Liu HJ, An XQ, Qu JH (2016) Phys Chem Chem Phys 18(24):16208–16215Google Scholar
  57. 57.
    Boiadjieva-Scherzer T, Kronberger H, Fafilek G, Monev M (2016) J Electroanal Chem 783:68–75Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mimi Liu
    • 1
  • Xiao Du
    • 1
    Email author
  • Fengfeng Gao
    • 1
  • Jinhua Luo
    • 1
  • Qiang Wang
    • 1
  • Feifan Liu
    • 1
  • Lutong Chang
    • 1
  • Xiaogang Hao
    • 1
    Email author
  1. 1.Department of Chemical EngineeringTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations