Efficient charge transfer and separation of TiO2@NiCo-LDH core-shell nanowire arrays for enhanced photoelectrochemical water-splitting

  • Chenchun Hao
  • Ru ZhangEmail author
  • Wenzhong WangEmail author
  • Liang Yujie 
  • Fu Junli 
  • Bin Zou
  • Honglong Shi
Original Paper


Efficient charge transfer and separation play a significant role in determining the photoelectrochemical (PEC) water-splitting performance of photocatalysts. Here, hierarchical nanowire arrays (NWAs) containing the TiO2 nanowire core and nickel-cobalt layered double hydroxide (NiCo-LDH) shell were synthesized by combining a hydrothermal method with a facile electrochemical-deposition process. The hierarchical structure not only forms heterojunctions between the TiO2 core and NiCo-LDH shell but also provides active sites for water-splitting reaction, achieving the charge transfer efficiency up to 87% and the charge separation efficiency up to 42% at 1.23 V vs. reversible hydrogen electrode (RHE) under one sun illumination. The excellent PEC water-splitting performance of TiO2@NiCo-LDH core-shell NWAs is attributed to the enhanced charge transfer and separation, resulting from the decoration of the NiCo-LDH cocatalyst. This facile and cost-effective strategy for integrating the light-harvesting TiO2 semiconductor and NiCo-LDH cocatalyst into a hierarchical core-shell nanostructure can be potentially applied in energy conversion and environmental applications.


Photoelectrochemical Water-splitting TiO2 Layered double hydroxide NiCo-LDH 


Funding information

This study was financially supported by the National Natural Science Foundation of China (61671085, 61377097, 11074312, 11374377, and 61575225) and Beijing Higher Education Young Elite Teacher Project (YETP1297).


  1. 1.
    Jiang CR, Moniz SJA, Wang AQ, Zhang T, Tang JW (2017) Photoelectrochemical devices for solar water splitting-materials and challenges. Chem Soc Rev 46(15):4645–4660CrossRefGoogle Scholar
  2. 2.
    Miller EL (2015) Photoelectrochemical water splitting. Energy Environ Sci 8(10):2809–2810CrossRefGoogle Scholar
  3. 3.
    Takanabe K (2017) Photocatalytic water splitting: quantitative approaches toward photocatalyst by design. ACS Catal 7(11):8006–8022CrossRefGoogle Scholar
  4. 4.
    Lewis NS (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 103(43):15729–15735CrossRefGoogle Scholar
  5. 5.
    Rodriguez CA, Modestino MA, Psaltis D, Moser C (2014) Design and cost considerations for practical solar-hydrogen generators. Energy Environ Sci 7(12):3828–3835CrossRefGoogle Scholar
  6. 6.
    Chen ZB, Dinh HN, Miller E (2013) Photoelectrochemical water splitting: standards, experimental methods, and protocols. SpringerBriefs in Energy, New YorkCrossRefGoogle Scholar
  7. 7.
    Chang XX, Wang T, Zhang P, Zhang JJ, Li A, Gong JL (2015) Enhanced surface reaction kinetics and charge separation of p-n heterojunction Co3O4/BiVO4 photoanodes. J Am Chem Soc 137(26):8356–8359CrossRefGoogle Scholar
  8. 8.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38CrossRefGoogle Scholar
  9. 9.
    Wang GM, Xiao XH, Li WQ, Lin ZY, Zhao ZP, Chen C, Wang C, Li YJ, Huang XQ, Miao L, Jiang CY, Huang Y, Duan XF (2015) Significantly enhanced visible light photoelectrochemical activity in TiO2 nanowire arrays by nitrogen implantation. Nano Lett 15(7):4692–4698CrossRefGoogle Scholar
  10. 10.
    Liu N, Haublein V, Zhou X, Venkatesan U, Hartmann M, Mackovic M, Nakajima T, Spiecker E, Osvet A, Frey L, Schmuki P (2015) “Black” TiO2 nanotubes formed by high-energy proton implantation show noble-metal-co-catalyst free photocatalytic H2-evolution. Nano Lett 15(10):6815–6820CrossRefGoogle Scholar
  11. 11.
    Sivula K, Van de Krol R (2016) Semiconducting materials for photoelectrochemical energy conversion. Nat Re Mater 1(2):15010CrossRefGoogle Scholar
  12. 12.
    Schipper DE, Zhao Z, Leitner AP, Xie L, Qin F, Alam MK, Chen S, Wang D, Ren ZF, Wang Z, Bao JM, Whitmire KH (2017) A TiO2/FeMnP core/shell nanorod array photoanode for efficient photoelectrochemical oxygen evolution. ACS Nano 11(4):4051–4059CrossRefGoogle Scholar
  13. 13.
    Liu QH, He JF, Yao T, Sun ZH, Cheng WR, He S, Xie Y, Peng YH, Cheng H, Sun YF, Jiang Y, Hu FC, Xie Z, Yan WS (2014) Aligned Fe2TiO5-containing nanotube arrays with low onset potential for visible-light water oxidation. Nat Commun 5(1):5122CrossRefGoogle Scholar
  14. 14.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271CrossRefGoogle Scholar
  15. 15.
    Cho IS, Lee CH, Feng Y, Logar M, Rao PM, Cai L, Kim DR (2013) Codoping titanium dioxide nanowires with tungsten and carbon for enhanced photoelectrochemical performance. Nat Commun 4(1):1723CrossRefGoogle Scholar
  16. 16.
    Oakton E, Lebedev D, Povia M, Abbott DF, Fabbri E, Fedorov A, Nachtegaal M, Copéret C, Schmidt TJ (2017) A high-surface-area, active, and stable electrocatalyst for the oxygen evolution reaction. ACS Catal 7(4):2346–2352Google Scholar
  17. 17.
    Reichert R, Jusys Z, Behm RJ (2015) Photo(electro)catalysis: the role of the Au cocatalyst in photoelectrochemical water splitting and photocatalytic H2 evolution. J Phys Chem C 119(44):24750–24759CrossRefGoogle Scholar
  18. 18.
    Leung DY, Fu X, Wang C, Ni M, Leung MK, Wang X, Fu X (2010) Hydrogen production over titania-based photocatalysts. ChemSusChem 3(6):681–694CrossRefGoogle Scholar
  19. 19.
    Xiang QJ, Yu JG, Jaroniec M (2012) Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc 134(15):6575–6578CrossRefGoogle Scholar
  20. 20.
    Lee JS, You KH, Park CB (2012) Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv Mater 24(8):1084–1088CrossRefGoogle Scholar
  21. 21.
    Ghayeb Y, Momeni MM, Ghonjalipoor E (2019) Manganese films grown on TiO2 nanotubes by photodeposition, electrodeposition and photoelectrodeposition: preparation and photoelectrochemical properties. Appl Phys A Mater Sci Process 125(5):323CrossRefGoogle Scholar
  22. 22.
    Momeni MM, Ghayeb Y, Moosavi N (2018) Study of various aliphatic alcohols as sacrificial agents on photoelectrochemical behavior of nickel-platinum-modified Cr-TiO2 nanotubes. J Solid State Electrochem 22(10):3137–3146CrossRefGoogle Scholar
  23. 23.
    Hao CC, Wang WZ, Zhang R, Zou B, Shi HL (2018) Enhanced photoelectrochemical water splitting with TiO2@Ag2O nanowire arrays via p-n heterojunction formation. Sol Energy Mater Sol Cells 174:132–139CrossRefGoogle Scholar
  24. 24.
    Shao MF, Ning FY, Wei M, Evans DG, Duan X (2014) Hierarchical nanowire arrays based on ZnO core−layered double hydroxide shell for largely enhanced photoelectrochemical water splitting. Adv Funct Mater 24(5):580–586CrossRefGoogle Scholar
  25. 25.
    Shao M, Zhang R, Li Z, Wei M, Evans DG, Duan X (2015) Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications. Chem Commun 51(88):15880–15893Google Scholar
  26. 26.
    Wang Q, O'Hare D (2012) Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem Rev 112(7):4124–4155CrossRefGoogle Scholar
  27. 27.
    Song F, Hu XL (2014) Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat Commun 5(1):4477CrossRefGoogle Scholar
  28. 28.
    Zhang RK, Shao MF, Xu SM, Ning FY, Zhou L, Wei M (2017) Photo-assisted synthesis of zinc-iron layered double hydroxides/TiO2 nanoarrays toward highly-efficient photoelectrochemical water splitting. Nano Energy 33:21–28Google Scholar
  29. 29.
    Guo J, Mao CY, Zhang RK, Shao MF, Wei M, Feng PY (2017) Reduced titania@layered double hydroxide hybrid photoanodes for enhanced photoelectrochemical water oxidation. J Mater Chem A 5(22):11016–11025Google Scholar
  30. 30.
    Sayed RA, Abd El Hafiz SE, Gamal N, GadelHak Y, El Rouby WMA (2017) Co-Fe layered double hydroxide decorated titanate nanowires for overall photoelectrochemical water splitting. J Alloys Compd 728:1171–7281179Google Scholar
  31. 31.
    Nagaraju G, Chandra Sekhar S, Krishna Bharat L, Yu JS (2017) Wearable fabrics with self-branched bimetallic layered double hydroxide coaxial nanostructures for hybrid supercapacitors.  ACS Nano 11(11):10860–10874CrossRefGoogle Scholar
  32. 32.
    Park Y, McDonald KJ, Choi KS (2013) Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem Soc Rev 42(6):2321–2337CrossRefGoogle Scholar
  33. 33.
    Cho IS, Chen Z, Forman AJ, Kim DR, Rao PM, Jaramillo TF, Zheng X (2011) Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett 11(11):4978–4984Google Scholar
  34. 34.
    Jung HS, Lee JK, Lee J, Kang BS, Jia Q, Nastasi M, Noh JH, Cho CM, Yoon SH (2008) Mobility enhanced photoactivity in sol-gel grown epitaxial anatase TiO2 films. Langmuir 24(6):2695–2698Google Scholar
  35. 35.
    Yang J, Yu C, Fan X, Zhao C, Qiu J (2015) Ultrafast self-assembly of graphene oxide-induced monolithic NiCo-Carbonate hydroxide nanowire architectures with a superior volumetric capacitance for supercapacitors. Adv Funct Mater 25(14):2109–2116Google Scholar
  36. 36.
    Liang H, Lin J, Jia H, Chen S, Qi J, Cao J, Lin T, Fei W, Feng J (2018) Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor. J Power Sources 378:248–254Google Scholar
  37. 37.
    Liu B, Aydil ES (2009) Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J Am Chem Soc 131(11):3985–3990Google Scholar
  38. 38.
    Jiang J, Zhang AL, Li LL, Ai LH (2015) Nickel–cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction. J Power Sources 278:445–451Google Scholar
  39. 39.
    Li C, Wang T, Luo Z, Liu S, Gong J (2016) Enhanced charge separation through ALD-modified Fe2O3/Fe2TiO5 nanorod heterojunction for photoelectrochemical water oxidation. Small 12(25):3415–3422Google Scholar
  40. 40.
    Ning FY, Shao MF, Xu SM, Fu Y, Zhang RK, Wei M, Evans DG, Duan X (2016) TiO2/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting. Energy Environ Sci 9(8):2633–2643Google Scholar
  41. 41.
    Zhou L, Zhao CQ, Giri B, Allen P, Xu XW, Joshi H, Fan YY, Titova LV, Rao PM (2016) High light absorption and charge separation efficiency at low applied voltage from Sb-doped SnO2/BiVO4 core/shell nanorod-array photoanodes. Nano Lett 16(6):3463–3474Google Scholar
  42. 42.
    Yang WG, Yu YH, Starr MB, Yin X, Li ZD, Kvit A, Wang SF, Zhao P, Wang XD (2015) Ferroelectric polarization-enhanced photoelectrochemical water splitting in TiO2-BaTiO3 core-shell nanowire photoanodes. Nano Lett 15(11):7574–7580Google Scholar
  43. 43.
    Ahmed MG, Kandiel TA, Ahmed AY, Kretschmer I, Rashwan F, Bahnemann D (2015) Enhanced photoelectrochemical water oxidation on nanostructured hematite photoanodes via p-CaFe2O4/n-Fe2O3 heterojunction formation. J Phys Chem C 119(11):5864–5871Google Scholar
  44. 44.
    Barroso M, Cowan AJ, Pendlebury SR, Gratzel M, Klug DR, Durrant JR (2011) The role of cobalt phosphate in enhancing the photocatalytic activity of alpha-Fe2O3 toward water oxidation. J Am Chem Soc 133(38):14868–14871Google Scholar
  45. 45.
    Farrow CL, Bediako DK, Surendranath Y, Nocera DG, Billinge SJ (2013) Intermediate-range structure of self-assembled cobalt-based oxygen-evolving catalyst. J Am Chem Soc 135(17):6403–6406Google Scholar
  46. 46.
    Risch M, Ringleb F, Kohlhoff M, Bogdanoff P, Chernev P, Zaharieva I, Dau H (2015) Water oxidation by amorphous cobalt-based oxides: in situ tracking of redox transitions and mode of catalysis. Energy Environ Sci 8(2):661–674Google Scholar
  47. 47.
    Liu GG, Li P, Zhao GX, Wang X, Kong JT, Liu HM, Zhang HB, Chang K, Meng XG, Kako T, Ye JH (2016) Promoting active species generation by plasmon-induced hot-electron excitation for efficient electrocatalytic oxygen evolution. J Am Chem Soc 138(29):9128–9136Google Scholar
  48. 48.
    Ye MD, Gong JJ, Lai YK, Lin CJ, Lin ZQ (2012) High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays. J Am Chem Soc 134(38):15720–15723Google Scholar
  49. 49.
    Zhang Z, Zhang L, Hedhili MN, Zhang H, Wang P (2013) Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett 13(1):14–20Google Scholar
  50. 50.
    Yang Y, Liu G, Irvine JT, Cheng HM (2016) Enhanced photocatalytic H2 production in core-shell engineered rutile TiO2. Adv Mater 28(28):5850–5856Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Information Photonics and Optical Communications & School of ScienceBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.School of Ethnic EducationBeijing University of Posts and TelecommunicationsBeijingChina
  3. 3.Beijing Key Laboratory of Space-ground Interconnection and ConvergenceBeijing University of Posts and TelecommunicationsBeijingChina
  4. 4.School of ScienceMinzu University of ChinaBeijingChina

Personalised recommendations