Advertisement

SnO2/Fe2O3 nano-heterojunction structure composites as an anode for lithium-ion battery

  • Shuling LiuEmail author
  • Yiming An
  • Jie Guo
  • Le Chai
Original Paper
  • 25 Downloads

Abstract

SnO2/Fe2O3 composites with a novel heterojunction nanostructure are successfully prepared via a facile two-step hydrothermal method. Fe2O3 nanoparticles with an average size of ~ 15 nm are found to attach onto the surface of SnO2 nanosheets with the diameter about 300 nm. The reversible capacity, cycling stability, and rate performance of the as-prepared nanocomposites are significantly improved compared with SnO2 or Fe2O3, which may be due to the synergistic effect between SnO2 nanosheets and Fe2O3 nanoparticles. Therefore, as an anode material for lithium-ion batteries, SnO2/Fe2O3 nanocomposites deliver a high initial discharge and reversible capacity of 2174.9 mAh g−1 and 1022 mAh g−1 at the current density of 100 mA g−1 and after 100 cycles, respectively. Even at the current density of 1000 mA g−1, the reversible capacity can still keep at 683 mAh g−1 after 100 cycles, which might be a good candidate for high-performance lithium ion batteries.

Notes

Funding information

This study is financially supported by the Natural Science Foundation of Shaanxi Province of China (2018JM2036), the Scientific Research Planning Program of Key laboratory of Shaanxi Province of China (18JS015), and the Graduate Innovation Fund of Shaanxi University of Science and Technology.

Supplementary material

10008_2019_4303_MOESM1_ESM.doc (30 kb)
ESM 1 (DOC 29 kb)

References

  1. 1.
    Shi Y, Ma D, Wang W, Zhang L, Xu X (2017) A supramolecular self-assembly hydrogel binder enables enhanced cycling of SnO2-based anode for high-performance lithium-ion batteries. J Mater Sci 52(7):3545–3555CrossRefGoogle Scholar
  2. 2.
    Jiang T, Bu F, Feng X, Shakir I, Hao G, Xu Y (2017) Porous Fe2O3 nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium-ion battery. ACS Nano 11(5):5140–5147CrossRefGoogle Scholar
  3. 3.
    Park SH, Kim HK, Roh KC, Kim KB (2015) Co3O4-reduced graphene oxide nanocomposite synthesized by microwave-assisted hydrothermal process for Li-ion batteries. Electron Mater Lett 11(2):282–287CrossRefGoogle Scholar
  4. 4.
    Wu HB, Chen JS, Lou XW, Hng HH (2011) Asymmetric anatase TiO2 nanocrystals with exposed high-index facets and their excellent lithium storage properties. Nanoscale 3(10):4082–4084CrossRefGoogle Scholar
  5. 5.
    Zhang L, Song J, Liu Y, Yuan X, Guo S (2018) Tailoring nanostructured MnO2 as anodes for lithium ion batteries with high reversible capacity and initial coulombic efficiency. J Power Sources 379:68–73CrossRefGoogle Scholar
  6. 6.
    Jin R, Jiang H, Sun Y, Ma Y, Li H, Chen G (2016) Fabrication of NiFe2O4/C hollow spheres constructed by mesoporous nanospheres for high-performance lithium-ion batteries. Chem Eng J 303:501–510CrossRefGoogle Scholar
  7. 7.
    Jin R, Ma Y, Sun Y, Li H, Wang Q, Chen G (2017) Manganese cobalt oxide (MnCo2O4) hollow spheres as high capacity anode materials for lithium-ion batteries. Energy Technol-Ger 5(2):293–299CrossRefGoogle Scholar
  8. 8.
    Bing Y, Zeng Y, Liu C, Qiao L, Zheng W (2015) Synthesis of double-shelled SnO2 nano-polyhedra and their improved gas sensing properties. Nanoscale 7(7):3276–3284CrossRefGoogle Scholar
  9. 9.
    Kar A, Patra A (2014) Recent development of core-shell SnO2 nanostructures and their potential applications. J Mater Chem C 2(33):6706–6722CrossRefGoogle Scholar
  10. 10.
    Cheng Y, Huang J, Li J, Xu Z, Cao L, Ouyang H, Yan J, Hui Q (2016) SnO2/super P nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performance. J Alloys Compd 658:234–240CrossRefGoogle Scholar
  11. 11.
    Liu SL, Li MM, Li S, Li HL (2013) Synthesis, characterization and optical properties of nanostructure Fe2O3 rod bundles. J Synth Cryst 42:1360–1365Google Scholar
  12. 12.
    Yin L, Chai S, Wang F, Huang J, Li J, Liu C, Kong X (2016) Ultrafine SnO2 nanoparticles as a high performance anode material for lithium ion battery. Ceram Int 42(8):9433–9437CrossRefGoogle Scholar
  13. 13.
    Zhu X, Zhu Y, Murali S, Stoller MD, Ruoff RS (2011) Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5(4):3333–3338CrossRefGoogle Scholar
  14. 14.
    Ye J, Zhang H, Yang R, Li X, Qi L (2010) Morphology-controlled synthesis of SnO2 nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. Small 6(2):296–306CrossRefGoogle Scholar
  15. 15.
    Wang Z, Luan D, Madhavi S, Li CM, Lou XW (2011) α-Fe2O3 nanotubes with superior lithium storage capability. Chem Commun 47(28):8061–8063CrossRefGoogle Scholar
  16. 16.
    Zhang J, Sun Y, Yao Y, Huang T, Yu A (2013) Lysine-assisted hydrothermal synthesis of hierarchically porous Fe2O3 microspheres as anode materials for lithium-ion batteries. J Power Sources 222:59–65CrossRefGoogle Scholar
  17. 17.
    Ding M, Liu H, Zhu J, Zhao X, Pang L, Qin Y, Deng L (2018) Constructing of hierarchical yolk-shell structure Li4Ti5O12-SnO2 composites for high rate lithium ion batteries. Appl Surf Sci 448:389–399CrossRefGoogle Scholar
  18. 18.
    Zhou GW, Wang J, Gao P, Yang X, He YS, Liao XZ, Yang J, Ma ZF (2012) Facile spray drying route for the three-dimensional graphene-encapsulated Fe2O3 nanoparticles for lithium ion battery anodes. Ind Eng Chem Res 52:1197–1204CrossRefGoogle Scholar
  19. 19.
    Guo Q, Qin X (2013) Flower-like SnO2 nanoparticles grown on graphene as anode materials for lithium-ion batteries. J Solid State Electrochem 18:1031–1039CrossRefGoogle Scholar
  20. 20.
    Wang X, Li Z, Zhang Z, Li Q, Guo E, Wang C, Yin L (2015) Mo-doped SnO2 mesoporous hollow structured spheres as anode materials for high-performance lithium ion batteries. Nanoscale 7(8):3604–3613CrossRefGoogle Scholar
  21. 21.
    Wei C, Zhang G, Bai Y, Yan D, Yu C, Wan N, Zhang W (2015) Al-doped SnO2 hollow sphere as a novel anode material for lithium ion battery. Solid State Ionics 272:133–137CrossRefGoogle Scholar
  22. 22.
    Wu M-S, Ou Y-H, Lin Y-P (2011) Iron oxide nanosheets and nanoparticles synthesized by a facile single-step coprecipitation method for lithium-ion batteries. J Electrochem Soc 158(3):A231–A236CrossRefGoogle Scholar
  23. 23.
    Wang Y, Xu J, Wu H, Xu M, Peng Z, Zheng G (2012) Hierarchical SnO2–Fe2O3 heterostructures as lithium-ion battery anodes. J Mater Chem 22(41):21923–21927CrossRefGoogle Scholar
  24. 24.
    Gu C, Guan W, Shim JJ, Fang Z, Huang J (2016) Size-controlled synthesis and electrochemical performance of porous Fe2O3/SnO2 nanocubes as an anode material for lithium ion batteries. Crystengcomm 19:708–715CrossRefGoogle Scholar
  25. 25.
    Zeng Y, Luo J, Wang Y, Qiao L, Zou B, Zheng W (2017) Controllable formation of multi-layered SnO2@Fe2O3 sandwich cubes as a high-performance anode for Li-ion batteries. Nanoscale 9(44):17576–17584CrossRefGoogle Scholar
  26. 26.
    Li T, Xin T, Ding Y, Zou J, Liu H, Liu B, Wang Y (2018) SnO2 nanocrystal-Fe2O3 nanorod hybrid structures: an anode material with enhanced lithium storage capacity. J Solid State Electrochem 23:379–387CrossRefGoogle Scholar
  27. 27.
    Yan Y, Du F, Shen X, Ji Z, Zhou H, Zhu G (2014) Porous SnO2-Fe2O3 nanocubes with improved electrochemical performance for lithium ion batteries. Dalton T 43(46):17544–17550CrossRefGoogle Scholar
  28. 28.
    Xia G, Li N, Li D, Liu R, Wang C, Li Q, Lü X, Spendelow JS, Zhang J, Wu G (2013) Graphene/Fe2O3/SnO2 ternary nanocomposites as a high-performance anode for lithium ion batteries. Appl Mater Interfaces 5(17):8607–8614CrossRefGoogle Scholar
  29. 29.
    Li Y, Hu Y, Jiang H, Hou X, Li C (2013) Phase-segregation induced growth of core–shell α-Fe2O3/SnO2 heterostructures for lithium-ion battery. Crystengcomm 15(34):6715–6721Google Scholar
  30. 30.
    Xing LL, Cui CX, Deng P, Nie YX, Zhao YY, He B, Xue XY (2013) Template-free assembly of α-Fe2O3–SnO2 core–shell nanorod arrays on titanium foil and their excellent lithium storage performance. RSC Adv 3(26):10379–10384CrossRefGoogle Scholar
  31. 31.
    Jin R, Guan Y, Liu H, Zhou J, Chen G (2015) Facile synthesis of SnO2/Fe2O3 hollow spheres and their application as anode materials in lithium-ion batteries. Chempluschem 79:1643–1648CrossRefGoogle Scholar
  32. 32.
    Zhang X, Chen H, Xie Y, Guo J (2014) Ultralong life lithium-ion battery anode with superior high-rate capability and excellent cyclic stability from mesoporous Fe2O3@TiO2 core–shell nanorods. J Mater Chem A 2(11):3912–3918CrossRefGoogle Scholar
  33. 33.
    Jiang B, He Y, Bo L, Zhao S, Wang S, He YB, Lin Z (2017) Polymer-templated formation of polydopamine-coated SnO2 nanocrystals: anodes for cyclable lithium-ion batteries. Angew Chem Int Ed 56(7):1869–1872CrossRefGoogle Scholar
  34. 34.
    Hu R, Chen D, Waller G, Ouyang Y, Chen Y, Zhao B, Rainwater B, Yang C, Zhu M, Liu M (2016) Dramatically enhanced reversibility of Li2O in SnO2-based electrodes: the effect of nanostructure on high initial reversible capacity. Energy Environ Sci 9(2):595–603CrossRefGoogle Scholar
  35. 35.
    Guo J, Chen L, Wang G, Zhang X, Li F (2014) In situ synthesis of SnO2–Fe2O3@ polyaniline and their conversion to SnO2–Fe2O3@C composite as fully reversible anode material for lithium-ion batteries. J Power Sources 246:862–867CrossRefGoogle Scholar
  36. 36.
    Xin T, Diao F, Li C, Feng H, Liu G, Zou J, Ding Y, Liu B, Wang Y (2018) Synergistic effect of hierarchical SnO2 nanorods/Fe2O3 hexahedrons with enhanced performance as lithium ion battery anodes. Mater Res Bull 99:196–203CrossRefGoogle Scholar
  37. 37.
    Huang B, Yang J, Zhou X (2014) Hierarchical SnO2 with double carbon coating composites as anode materials for lithium ion batteries. J Solid State Electrochem 18(9):2443–2449CrossRefGoogle Scholar
  38. 38.
    Guo J, Jiang B, Zhang X, Liu H (2014) Monodisperse SnO2 anchored reduced graphene oxide nanocomposites as negative electrode with high rate capability and long cyclability for lithium-ion batteries. J Power Sources 262:15–22CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry & Chemical EngineeringShaanxi University of Science & TechnologyXi’anPeople’s Republic of China
  2. 2.Shaanxi Key Laboratory of Chemical Additives for IndustryShaanxi University of Science and TechnologyXi’anPeople’s Republic of China

Personalised recommendations