Advertisement

About the capacitive currents in conducting polymers: the case of polyaniline

  • Juliana Scotto
  • Waldemar A. Marmisollé
  • Dionisio PosadasEmail author
Review
  • 23 Downloads

Abstract

In the present work, we review the occurrence of capacitive currents in conducting polymer and, particularly, in the electrochemical response of polyaniline film-coated electrodes Firstly, we present and discuss the differences between the electrical double-layer capacitance and the so-called pseudocapacitance. Then, we discuss the capacitive behavior of Pani as studied by a variety of electrochemical (cyclic voltammetry, electrochemical impedance spectroscopy) and spectroscopic techniques (epr, UV-visible). Understanding the capacitive behavior of polyaniline (Pani) becomes essential not only from an academic point-of-view but also from a technological perspective, as Pani has been extensively employed for the construction of materials for supercapacitors.

Keywords

Capacitance Pseudocapacitance Double layer Constant phase element Cyclic voltammetry Polyaniline 

Notes

Acknowledgments

WAM and DP are members of the CIC of the CONICET. JS thanks a fellowship from CONICET.

Funding information

This work was financially supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (PIP 0813), the Agencia Nacional de Promoción Científica Tecnológica (ANPCyT) (PICT-0407, PICT-2015-0239), and the Universidad Nacional de La Plata (UNLP) (PPID-X016).

References

  1. 1.
    Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. SpringerGoogle Scholar
  2. 2.
    Eftekhari A, Li L, Yang Y (2017) Polyaniline supercapacitors. J Power Sources 347:86–107.  https://doi.org/10.1016/j.jpowsour.2017.02.054 CrossRefGoogle Scholar
  3. 3.
    Liu J, Zhou M, Fan L-Z et al (2010) Porous polyaniline exhibits highly enhanced electrochemical capacitance performance. Electrochim Acta 55:5819–5822.  https://doi.org/10.1016/j.electacta.2010.05.030 CrossRefGoogle Scholar
  4. 4.
    Zhou K, He Y, Xu Q et al (2018) A hydrogel of ultrathin pure polyaniline nanofibers: oxidant-templating preparation and supercapacitor application. ACS Nano 12:5888–5894.  https://doi.org/10.1021/acsnano.8b02055 CrossRefPubMedGoogle Scholar
  5. 5.
    Guan H, Fan L-Z, Zhang H, Qu X (2010) Polyaniline nanofibers obtained by interfacial polymerization for high-rate supercapacitors. Electrochim Acta 56:964–968.  https://doi.org/10.1016/j.electacta.2010.09.078 CrossRefGoogle Scholar
  6. 6.
    Miao Y, Fan W, Chen D, Liu T (2013) High-performance supercapacitors based on hollow polyaniline nanofibers by electrospinning. ACS Appl Mater Interfaces 5:4423–4428.  https://doi.org/10.1021/am4008352 CrossRefPubMedGoogle Scholar
  7. 7.
    Sydulu SB, Palaniappan S, Srinivas P (2013) Nano fibre polyaniline containing long chain and small molecule dopants and carbon composites for supercapacitor. Electrochim Acta 95:251–259.  https://doi.org/10.1016/j.electacta.2013.02.040 CrossRefGoogle Scholar
  8. 8.
    Ghenaatian HR, Mousavi MF, Rahmanifar MS (2012) High performance hybrid supercapacitor based on two nanostructured conducting polymers: self-doped polyaniline and polypyrrole nanofibers. Electrochim Acta 78:212–222.  https://doi.org/10.1016/j.electacta.2012.05.139 CrossRefGoogle Scholar
  9. 9.
    Wang K, Huang J, Wei Z (2010) Conducting polyaniline nanowire arrays for high performance supercapacitors. J Phys Chem C 114:8062–8067CrossRefGoogle Scholar
  10. 10.
    He S, Hu X, Chen S et al (2012) Needle-like polyaniline nanowires on graphite nanofibers: hierarchical micro/nano-architecture for high performance supercapacitors. J Mater Chem 22:5114.  https://doi.org/10.1039/c2jm15668g CrossRefGoogle Scholar
  11. 11.
    Dhawale DS, Vinu A, Lokhande CD (2011) Stable nanostructured polyaniline electrode for supercapacitor application. Electrochim Acta 56:9482–9487.  https://doi.org/10.1016/j.electacta.2011.08.042 CrossRefGoogle Scholar
  12. 12.
    Chen W, Rakhi RB, Alshareef HN (2013) Facile synthesis of polyaniline nanotubes using reactive oxide templates for high energy density pseudocapacitors. J Mater Chem A 1:3315.  https://doi.org/10.1039/c3ta00499f CrossRefGoogle Scholar
  13. 13.
    Marmisollé WA, Azzaroni O (2016) Recent developments in the layer-by-layer assembly of polyaniline and carbon nanomaterials for energy storage and sensing applications. From synthetic aspects to structural and functional characterization. Nanoscale 8:9890–9918.  https://doi.org/10.1039/C5NR08326E CrossRefPubMedGoogle Scholar
  14. 14.
    Blighe FM, Diamond D, Coleman JN, Lahiff E (2012) Increased response/recovery lifetimes and reinforcement of polyaniline nanofiber films using carbon nanotubes. Carbon N Y 50:1447–1454.  https://doi.org/10.1016/j.carbon.2011.10.022 CrossRefGoogle Scholar
  15. 15.
    Du X, Liu H-Y, Cai G et al (2012) Use of facile mechanochemical method to functionalize carbon nanofibers with nanostructured polyaniline and their electrochemical capacitance. Nanoscale Res Lett 7:111.  https://doi.org/10.1186/1556-276X-7-111 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wang K, Meng Q, Zhang Y et al (2013) High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv Mater 25:1494–1498.  https://doi.org/10.1002/adma.201204598 CrossRefPubMedGoogle Scholar
  17. 17.
    Chen S, Hu Y, Li Z et al (2017) High-performance supercapacitors based on electrochemical-induced vertical-aligned carbon nanotubes and polyaniline nanocomposite electrodes. Sci Rep 7:1–8.  https://doi.org/10.1038/srep43676 CrossRefGoogle Scholar
  18. 18.
    Zhang K, Zhang LL, Zhao XS, Wu J (2010) Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 22:1392–1401.  https://doi.org/10.1021/cm902876u CrossRefGoogle Scholar
  19. 19.
    Li X, Song H, Zhang Y et al (2012) Enhanced electrochemical capacitance of graphene nanosheets coating with polyaniline for supercapacitors. Int J Electrochem Sci 7:5163–5171Google Scholar
  20. 20.
    Li L, Raji A-RO, Fei H et al (2013) Nanocomposite of polyaniline nanorods grown on graphene nanoribbons for highly capacitive pseudocapacitors. ACS Appl Mater Interfaces 5:6622–6627.  https://doi.org/10.1021/am4013165 CrossRefPubMedGoogle Scholar
  21. 21.
    Basnayaka PA, Ram MK, Stefanakos EK, Kumar A (2013) Supercapacitors based on graphene-polyaniline derivative nanocomposite electrode materials. Electrochim Acta 92:376–382.  https://doi.org/10.1016/j.electacta.2013.01.039 CrossRefGoogle Scholar
  22. 22.
    Fenoy GE, Van der Schueren B, Scotto J et al (2018) Layer-by-layer assembly of iron oxide-decorated few-layer graphene/PANI:PSS composite films for high performance supercapacitors operating in neutral aqueous electrolytes. Electrochim Acta 283:1178–1187.  https://doi.org/10.1016/j.electacta.2018.07.085 CrossRefGoogle Scholar
  23. 23.
    Gao Z, Yang W, Wang J et al (2013) Electrochemical synthesis of layer-by-layer reduced graphene oxide sheets/polyaniline nanofibers composite and its electrochemical performance. Electrochim Acta 91:185–194.  https://doi.org/10.1016/j.electacta.2012.12.119 CrossRefGoogle Scholar
  24. 24.
    Kumar NA, Choi H, Shin YR et al (2012) Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors. ACS Nano 6:1715–1723CrossRefPubMedGoogle Scholar
  25. 25.
    Wu J, Zhang Q, Wang J et al (2018) A self-assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high-performance supercapacitors. Energy Environ Sci 11:1280–1286.  https://doi.org/10.1039/C8EE00078F CrossRefGoogle Scholar
  26. 26.
    Li P, Zhang D, Xu Y et al (2018) Hierarchical porous polyaniline supercapacitor electrode from polyaniline/silica self- aggregates. Polym Int 67:1670–1676.  https://doi.org/10.1002/pi.5692 CrossRefGoogle Scholar
  27. 27.
    Li X, Chai Y, Zhang H et al (2012) Synthesis of polyaniline/tin oxide hybrid and its improved electrochemical capacitance performance. Electrochim Acta 85:9–15.  https://doi.org/10.1016/j.electacta.2012.07.124 CrossRefGoogle Scholar
  28. 28.
    Iranagh SA, Eskandarian L, Mohammadi R (2013) Synthesis of MnO2-polyaniline nanofiber composites to produce high conductive polymer. Synth Met 172:49–53.  https://doi.org/10.1016/j.synthmet.2013.04.002 CrossRefGoogle Scholar
  29. 29.
    de Levie R (1990) Fractals and rough electrodes. J Electroanal Chem Interfacial Electrochem 281:1–21.  https://doi.org/10.1016/0022-0728(90)87025-F CrossRefGoogle Scholar
  30. 30.
    Bard AJ, Faulkner LR (2001) Electrochemical methods. Fundamentals and applications, 2nd edn. Wiley, USAGoogle Scholar
  31. 31.
    van den Eeden ALG, Sluyters JH, van Lenthe JH (1984) The metal side of the electrical double layer at the metal/electrolyte interface. J Electroanal Chem Interfacial Electrochem 171:195–217.  https://doi.org/10.1016/0022-0728(84)80114-X CrossRefGoogle Scholar
  32. 32.
    Grahame DC (1947) The electrical double layer and the theory of electrocapillarity. Chem Rev 41:441–501.  https://doi.org/10.1021/cr60130a002 CrossRefPubMedGoogle Scholar
  33. 33.
    Hamelin A (1985) Double-layer properties at sp and sd metal single-crystal electrodes. Mod Asp ElectrochemGoogle Scholar
  34. 34.
    Vorotyntsev MA (1986) Modern state of double layer study of solid metals. In: Mod. Asp. Electrochem, pp 131–222CrossRefGoogle Scholar
  35. 35.
    Plieth WJ, Vetter KJ (1968) Thermodynamik der Phasengrenze Metall/Elektrolyt reversibler Elektroden. Ber Bunsenges Phys Chem 72:673–680.  https://doi.org/10.1002/bbpc.19680720604 CrossRefGoogle Scholar
  36. 36.
    Frumkin A, Petry O, Damaskin B (1970) The notion of the electrode charge and the Lippmann equation. J Electroanal Chem Interfacial Electrochem 27:81–100.  https://doi.org/10.1016/S0022-0728(70)80204-2 CrossRefGoogle Scholar
  37. 37.
    Marmisolle WA, Capdevila DA, De LE et al (2013) Self-assembled monolayers of NH2-terminated thiolates: order, pKa, and specific adsorption. Langmuir 29:5351–5359CrossRefPubMedGoogle Scholar
  38. 38.
    Conway BE (1965) Theory and principles of electrode processes. Ronald Press CoGoogle Scholar
  39. 39.
    Brown AP, Anson FC (1977) Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface. Anal Chem 49:1589–1595.  https://doi.org/10.1021/ac50019a033 CrossRefGoogle Scholar
  40. 40.
    Clark A (1970) Theory of adsorption and catalysisGoogle Scholar
  41. 41.
    Srinivasan S, Gileadi E (1966) The potential-sweep method: a theoretical analysis. Electrochim Acta 11:321–335.  https://doi.org/10.1016/0013-4686(66)87043-3 CrossRefGoogle Scholar
  42. 42.
    Diaz a F, Castillo JI, Logan JA, Lee W-Y (1981) Electrochemistry of conducting polypyrrole films. J Electroanal Chem Interfacial Electrochem 129:115–132.  https://doi.org/10.1016/S0022-0728(81)80008-3 CrossRefGoogle Scholar
  43. 43.
    Kobayashi T, Yoneyama H, Tamura H (1984) Electrochemical reactions concerned with electrochromism of polyaniline film-coated electrodes. J Electroanal Chem 177:281–291.  https://doi.org/10.1016/0022-0728(84)80229-6 CrossRefGoogle Scholar
  44. 44.
    Waltman RJ, Bargon J, Diaz AF (1983) Electrochemical studies of some conducting polythiophene films. J Phys Chem 87:1459–1463.  https://doi.org/10.1021/j100231a035 CrossRefGoogle Scholar
  45. 45.
    Marmisollé WA, Florit MI, Posadas D (2011) A formal representation of the anodic voltammetric response of polyaniline. J Electroanal Chem 655:17–22.  https://doi.org/10.1016/j.jelechem.2011.02.019 CrossRefGoogle Scholar
  46. 46.
    Albuquerque J, Mattoso LH, Balogh D et al (2000) A simple method to estimate the oxidation state of polyanilines. Synth Met 113:19–22.  https://doi.org/10.1016/S0379-6779(99)00299-4 CrossRefGoogle Scholar
  47. 47.
    Kang E, Neoh KG, Tan KL (1998) Polyaniline: a polymer with many interesting intrinsic redox states. Prog Polym Sci 23:277–324.  https://doi.org/10.1016/S0079-6700(97)00030-0 CrossRefGoogle Scholar
  48. 48.
    Kalaji M, Peter LM, Abrantes LM, Mesquita JC (1989) Microelectrode studies of fast switching in polyaniline films. J Electroanal Chem Interfacial Electrochem 274:289–295.  https://doi.org/10.1016/0022-0728(89)87051-2 CrossRefGoogle Scholar
  49. 49.
    Marmisollé WA, Florit MI, Posadas D (2013) Coupling between proton binding and redox potential in electrochemically active macromolecules. The example of polyaniline. J Electroanal Chem 707:43–51.  https://doi.org/10.1016/j.jelechem.2013.08.012 CrossRefGoogle Scholar
  50. 50.
    Scotto J, Florit MI, Posadas D (2017) pH dependence of the voltammetric response of polyaniline. J Electroanal Chem 785:14–19.  https://doi.org/10.1016/j.jelechem.2016.11.066 CrossRefGoogle Scholar
  51. 51.
    Marmisollé WA, Florit MI, Posadas D (2014) Acid-base equilibrium in conducting polymers. The case of reduced polyaniline. J Electroanal Chem.  https://doi.org/10.1016/j.jelechem.2014.03.003
  52. 52.
    Doblhofer K, Vorotyntsev M (1994) The membrane properties of electroactive polymer films. In: Electroact. Polym. Electrochem. Springer US, Boston, MA, pp 375–442Google Scholar
  53. 53.
    Andrade EM, Molina V, Florit I, Posadas D (2000) Volume changes of poly ( 2-methylaniline ) upon redox switching. Electrochem Solid-State Lett 3:504–507CrossRefGoogle Scholar
  54. 54.
    Horányi G, Inzelt G (1988) Application of radiotracer methods to the study of the formation and behaviour of polymer film electrodes. Investigation of the formation and overoxidation of labelled polyaniline films. J Electroanal Chem 257:311–317.  https://doi.org/10.1016/0022-0728(88)87052-9 CrossRefGoogle Scholar
  55. 55.
    Kazarinov VE, Andreev VN, Spytsin MA, Shlepakov AV (1990) Role of anions in the electrochemical transformation processes of polyaniline. Electrochim Acta 35:899–904.  https://doi.org/10.1016/0013-4686(90)90087-G CrossRefGoogle Scholar
  56. 56.
    Orata D, Buttry DA (1987) Determination of ion populations and solvent content as functions of redox state and pH in polyaniline. J Am Chem Soc 109:3574–3581.  https://doi.org/10.1021/ja00246a013 CrossRefGoogle Scholar
  57. 57.
    Daifuku H, Kawagoe T, Yamamoto N et al (1989) A study of the redox reaction mechanisms of polyaniline using a quartz crystal microbalance. J Electroanal Chem Interfacial Electrochem 274:313–318.  https://doi.org/10.1016/0022-0728(89)87054-8 CrossRefGoogle Scholar
  58. 58.
    Sapoval B, Gutfraind R, Meakin P et al (1993) Equivalent-circuit, scaling, random-walk simulation, and an experimental study of self-similar fractal electrodes and interfaces. Phys Rev E 48:3333–3344.  https://doi.org/10.1103/PhysRevE.48.3333 CrossRefGoogle Scholar
  59. 59.
    Cordoba-Torresi S, Gabrielli C, Keddam M et al (1990) Role of ion exchange in the redox processes of a polyaniline film studied by an ac quartz crystal microbalance. J Electroanal Chem Interfacial Electrochem 290:269–274.  https://doi.org/10.1016/0022-0728(90)87437-O CrossRefGoogle Scholar
  60. 60.
    Bácskai J, Kertész V, Inzelt G (1993) An electrochemical quartz crystal microbalance study of the influence of pH and solution composition on the electrochemical behaviour of poly(aniline) films. Electrochim Acta 38:393–397.  https://doi.org/10.1016/0013-4686(93)85156-S CrossRefGoogle Scholar
  61. 61.
    Ramirez S, Hillman AR (1998) Electrochemical quartz crystal microbalance studies of poly(ortho-toluidine) films exposed to aqueous Perchloric acid solutions. J Electrochem Soc 145:2640.  https://doi.org/10.1149/1.1838693 CrossRefGoogle Scholar
  62. 62.
    Andrade E, Molina F, Florit M, Posadas D (1996) IR response of poly ( o-toluidine): spectral modifications upon redox state change. J Electroanal Chem 419:15–21CrossRefGoogle Scholar
  63. 63.
    Troise Frank MH, Denuault G (1994) Scanning electrochemical microscope (SECM) study of the relationship between proton concentration and electronic charge as a function of ionic strength during the oxidation of polyaniline. J Electroanal Chem 379:399–406.  https://doi.org/10.1016/0022-0728(94)87163-9 CrossRefGoogle Scholar
  64. 64.
    Barbero C, Miras MC, Haas O, Kotz R (1991) Alteration of the ion exchange mechanism of an electroactive polymer by manipulation of the active site probe beam deflection and quartz crystal ~ crobal ~~ e study of poly @ niline and poly (Wmethylaniline ). J Electroanal Chem 310:437–443CrossRefGoogle Scholar
  65. 65.
    Shimazu K, Murakoshi K, Kita H (1990) Quantitative and in-situ measurements of proton transport at polyaniline film electrodes. J Electroanal Chem Interfacial Electrochem 277:347–353.  https://doi.org/10.1016/0022-0728(90)85114-K CrossRefGoogle Scholar
  66. 66.
    Lapkowski M, Genies EM (1990) Spectroelectrochemical studies of proton exchange processes in the electrochemical reactions of polyaniline using pH indicators. J Electroanal Chem Interfacial Electrochem 284:127–140.  https://doi.org/10.1016/0022-0728(90)87067-T CrossRefGoogle Scholar
  67. 67.
    Ybarra G, Moina C, Florit MI, Posadas D (2000) Proton exchange during the redox switching of polyaniline film electrodes. Electrochem Solid-State Lett 3:330–332.  https://doi.org/10.1149/1.1391139 CrossRefGoogle Scholar
  68. 68.
    Baba A, Tian S, Stefani F et al (2004) Electropolymerization and doping/dedoping properties of polyaniline thin films as studied by electrochemical-surface plasmon spectroscopy and by the quartz crystal microbalance. J Electroanal Chem 562:95–103.  https://doi.org/10.1016/j.jelechem.2003.08.012 CrossRefGoogle Scholar
  69. 69.
    Scotto J, Florit MI, Posadas D (2016) The effect of membrane equilibrium on the behaviour of electrochemically active polymers. J Electroanal Chem 774:42–50.  https://doi.org/10.1016/j.jelechem.2016.04.052 CrossRefGoogle Scholar
  70. 70.
    Scotto J, Florit MI, Posadas D (2018) Redox commuting properties of polyaniline in hydrochloric, sulphuric and perchloric acid solutions. J Electroanal Chem 817:160–166.  https://doi.org/10.1016/j.jelechem.2018.03.057 CrossRefGoogle Scholar
  71. 71.
    Focke WW, Wnek GE, Wei Y (1987) Influence of oxidation state, pH, and counterion on the conductivity of polyaniline. J Phys Chem 91:5813–5818.  https://doi.org/10.1021/j100306a059 CrossRefGoogle Scholar
  72. 72.
    Saraswathi R, Kuwabata S, Yoneyama H (1992) Influence of basicity of dopant anions on the conductivity of polyaniline. J Electroanal Chem 335:223–231.  https://doi.org/10.1016/0022-0728(92)80244-X CrossRefGoogle Scholar
  73. 73.
    MacDiarmid AG, Epstein AJ (1995) Secondary doping in polyaniline. Synth Met 69:85–92.  https://doi.org/10.1016/0379-6779(94)02374-8 CrossRefGoogle Scholar
  74. 74.
    Lee K-H, Park BJ, Song DH et al (2009) The role of acidic m-cresol in polyaniline doped by camphorsulfonic acid. Polymer (Guildf) 50:4372–4377.  https://doi.org/10.1016/j.polymer.2009.07.009 CrossRefGoogle Scholar
  75. 75.
    Genies EM, Penneau JF, Vieil E (1990) The influence of counteranions and pH on the capacitive current of conducting polyaniline. J Electroanal Chem 283:205–219CrossRefGoogle Scholar
  76. 76.
    Roßberg K, Paasch G, Dunsch L, Ludwig S (1998) The influence of porosity and the nature of the charge storage capacitance on the impedance behaviour of electropolymerized polyaniline films. J Electroanal Chem 443:49–62.  https://doi.org/10.1016/S0022-0728(97)00494-4 CrossRefGoogle Scholar
  77. 77.
    Dinh HN, Birss VI (1998) Electrochemical and mass measurements during small voltage amplitude perturbations of conducting polyaniline films. J Electroanal Chem 443:63–71.  https://doi.org/10.1016/S0022-0728(97)00470-1 CrossRefGoogle Scholar
  78. 78.
    Scotto J, Florit MI, Posadas D (2018) About the species formed during the electrochemical half oxidation of polyaniline: polaron-bipolaron equilibrium. Electrochim Acta 268:187–194.  https://doi.org/10.1016/j.electacta.2018.02.066 CrossRefGoogle Scholar
  79. 79.
    Barsukov V, Chivikov S (1996) The “capacitor” concept of the current-producing process mechanism in polyaniline type conducting polymers. Electrochim Acta 41:1773–1779.  https://doi.org/10.1016/0013-4686(95)00494-7 CrossRefGoogle Scholar
  80. 80.
    Kalaji M, Peter L (1982) No title. J Chem Soc Faraday Trans 129:853Google Scholar
  81. 81.
    Feldberg SW (1984) Reinterpretation of polypyrrole electrochemistry. Consideration of capacitive currents in redox switching of conducting polymers. J Am Chem Soc 106:4671–4674.  https://doi.org/10.1021/ja00329a004 CrossRefGoogle Scholar
  82. 82.
    Huang W-S, Humphrey BD, MacDiarmid AG (1986) Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J Chem Soc, Faraday Trans 1 F 88:2385–2400CrossRefGoogle Scholar
  83. 83.
    Munakata H, Oyamatsu D, Kuwabata S (2004) Effects of omega-functional groups on pH-dependent reductive desorption of alkanethiol self-assembled monolayers. Langmuir 20:10123–10128.  https://doi.org/10.1021/la048878h CrossRefPubMedGoogle Scholar
  84. 84.
    Kalaji M, Nyholm L, Peter LM (1991) A microelectrode study of the influence of pH and solution composition on the electrochemical behaviour of polyaniline films. J Electroanal Chem 313:271–289.  https://doi.org/10.1016/0022-0728(91)85185-R CrossRefGoogle Scholar
  85. 85.
    Genies EM, Boyle A, Lapkowski M, Tsintavis C (1990) Polyanilne: a historical survey. Synth Met 36:139–182CrossRefGoogle Scholar
  86. 86.
    Rudzinski WE, Lozano L, Walker M (1990) The effects of pH on the polyaniline switching reaction. J Electrochem Soc 137:3132.  https://doi.org/10.1149/1.2086172 CrossRefGoogle Scholar
  87. 87.
    Inzelt G, Horányi G (1990) Some problems connected with the study and evaluation of the effect of pH and electrolyte concentration on the behaviour of polyaniline film electrodes. Electrochim Acta 35:27–34.  https://doi.org/10.1016/0013-4686(90)85032-I CrossRefGoogle Scholar
  88. 88.
    Tanguy J, Mermilliod N, Hoclet M (1987) Capacitive charge and noncapacitive charge in conducting polymer electrodes. J Electrochem Soc 134:795–802.  https://doi.org/10.1149/1.2100575 CrossRefGoogle Scholar
  89. 89.
    Servagent S, Vieil E (1989) Resistance and differential capacitance of poly(3-methylthiophene) films. Comparison between cyclic voltammetry and chronopotentiometry. Synth Met 31:127–139CrossRefGoogle Scholar
  90. 90.
    Matencio T, Vieil E (1991) Variable capacitance and conductance in polyaniline: a simple model with interacting sites and a single quasi-reversible charge transfer. Synth Met 43:3001–3004CrossRefGoogle Scholar
  91. 91.
    Vorotyntsev MA, Daikhin LI, Levi MD (1992) Isotherms of electrochemical doping and cyclic voltammograms of electroactive polymer films. J Electroanal Chem 332:213–235CrossRefGoogle Scholar
  92. 92.
    Aoki K, Cao J, Hoshino Y (1993) Coulombic irreversibility at polyaniline-coated electrodes by electrochemical switching. Electrochim Acta 38:1711–1716.  https://doi.org/10.1016/0013-4686(93)85066-8 CrossRefGoogle Scholar
  93. 93.
    Tezuka Y, Aoki K, Shinozaki K (1989) Kinetics of oxidation of polypyrrole-coated transparent electrodes by in situ linear sweep voltammetry and spectroscopy. Synth Met 30:369–379.  https://doi.org/10.1016/0379-6779(89)90660-7 CrossRefGoogle Scholar
  94. 94.
    Inzelt G, Láng G, Kertész V, Bácskai J (1993) Effect of the temperature on the conductivity and capacitance of poly(aniline) film electrodes. Electrochim Acta 38:2503–2510.  https://doi.org/10.1016/0013-4686(93)80145-P CrossRefGoogle Scholar
  95. 95.
    Rubinstein I, Sabatani E, Rishpon J (1987) Electrochemical impedance analysis of polyaniline films on electrodes. J Electrochem Soc 134:3078–3083.  https://doi.org/10.1149/1.2100343 CrossRefGoogle Scholar
  96. 96.
    Fiordiponti P, Pistoia G (1989) An impedance study of polyaniline films in aqueous and organic solutions. Electrochim Acta 34:215–221.  https://doi.org/10.1016/0013-4686(89)87088-4 CrossRefGoogle Scholar
  97. 97.
    Kalaji M, Peter LM (1991) Optical and electrical a.c. response of polyaniline films. J Chem Soc Faraday Trans 87:853–860.  https://doi.org/10.1039/FT9918700853 CrossRefGoogle Scholar
  98. 98.
    Žic M (2007) The effect of the PANI-free volume on impedance response. J Electroanal Chem 610:57–66.  https://doi.org/10.1016/j.jelechem.2007.07.001 CrossRefGoogle Scholar
  99. 99.
    Popkirov GS, Barsoukov E (1995) In-situ impedance measurements during oxidation and reduction of conducting polymers: significance of the capacitive currents. J Electroanal Chem 383:155–160CrossRefGoogle Scholar
  100. 100.
    Naoi K, Lien MM, Smyrl WH, Owens BB (1989) Capacitive behavior in conducting polymers. Appl Phys Commun 9:14Google Scholar
  101. 101.
    Pickup PG (1990) Alternating current impedance study of a polypyrrole-based anion-exchange polymer. J Chem Soc Faraday Trans 86:3631–3636.  https://doi.org/10.1039/FT9908603631 CrossRefGoogle Scholar
  102. 102.
    Ren X, Pickup PG (1992) Ionic and electronic conductivity of poly-(3-methylpyrrole-4-carboxylic acid). J Electrochem Soc 139:2097–2105.  https://doi.org/10.1149/1.2221185 CrossRefGoogle Scholar
  103. 103.
    Grzeszczuk M, Żabińska-Olszak G (1993) Ionic transport in polyaniline film electrodes: an impedance study. J Electroanal Chem 359:161–174.  https://doi.org/10.1016/0022-0728(93)80407-9 CrossRefGoogle Scholar
  104. 104.
    Komura T, Sakabayashi H, Takahashi K (1995) Electrochemical impedance study and characteristics of polyaniline film electrodes. Bull Chem Soc Jpn 68:476–480.  https://doi.org/10.1246/bcsj.68.476 CrossRefGoogle Scholar
  105. 105.
    Genz O, Lohrengel MM, Schultze JW (1994) Potentiostatic pulse and impedance investigations of the redox process in polyaniline films. Electrochim Acta 39:179–185.  https://doi.org/10.1016/0013-4686(94)80053-7 CrossRefGoogle Scholar
  106. 106.
    Sandí G, Vanýsek P (1994) Impedance and voltammetric studies of electrogenerated polyaniline conducting films. Synth Met 64:1–8.  https://doi.org/10.1016/0379-6779(94)90266-6 CrossRefGoogle Scholar
  107. 107.
    Mermilliod N, Tanguy J, Petiot F (1986) A study of chemically synthesized polypyrrole as electrode material for battery applications. J Electrochem Soc 133:1073.  https://doi.org/10.1149/1.2108788 CrossRefGoogle Scholar
  108. 108.
    Tanguy J, Slama M, Hoclet M, Baudouin JL (1989) Impedance measurements on different conducting polymers. Synth Met 28:145–150.  https://doi.org/10.1016/0379-6779(89)90512-2 CrossRefGoogle Scholar
  109. 109.
    Tanguy J, Baudoin JL, Chao F, Costa M (1992) Study of the redox mechanism of poly-3-methylthiophene by impedance spectroscopy. Electrochim Acta 37:1417–1428.  https://doi.org/10.1016/0013-4686(92)87016-S CrossRefGoogle Scholar
  110. 110.
    Tanguy J, Proń A, Zagórska M, Kulszewicz-Bajer I (1991) Poly(3-alkylthiophenes) and poly(4,4′-dialkyl-2,2′-bithiophenes): a comparative study by impedance spectroscopy and cyclic voltammetry. Synth Met 45:81–105.  https://doi.org/10.1016/0379-6779(91)91849-6 CrossRefGoogle Scholar
  111. 111.
    Feldman BJ, Burgmayer P, Murray RW (1985) The potential dependence of electrical conductivity and chemical charge storage of poly(pyrrole) films on electrodes. J Am Chem Soc 107:872–878.  https://doi.org/10.1021/ja00290a024 CrossRefGoogle Scholar
  112. 112.
    Ren X, Pickup PG (1994) Strong dependence of the electron-hopping rate in poly-tris(5-amino-1,10-phenanthroline)iron(III/II) on the nature of the counter-anion. J Electroanal Chem 365:289–292.  https://doi.org/10.1016/0022-0728(93)03052-Q CrossRefGoogle Scholar
  113. 113.
    Heinze J, Störzbach M, Mortensen J (1987) Experimental and theoretical studies on the redox properties of conducting polymers. Ber Bunsenges Phys Chem 91:960–967.  https://doi.org/10.1002/bbpc.19870910926 CrossRefGoogle Scholar
  114. 114.
    Glarum SH, Marshall JH (1986) In situ potential dependence of poly(aniline) paramagnetism. J Phys Chem 90:6076–6077.  https://doi.org/10.1021/j100281a005 CrossRefGoogle Scholar
  115. 115.
    Macdiarmid AG, Chiang J-C, Richter AF, Epstein AJ (1987) Polyaniline: a new concept in conducting polymers. Synth Met 18:285–290.  https://doi.org/10.1016/0379-6779(87)90893-9 CrossRefGoogle Scholar
  116. 116.
    Kaya M, Kitani A, Sasaki K (1986) EPR studies of the charging process of polyaniline electrodes. Chem Lett 15:147–150.  https://doi.org/10.1246/cl.1986.147 CrossRefGoogle Scholar
  117. 117.
    Genies EM, Lapkowski M (1987) Electrochemical in situ epr evidence of two polaron-bipolaron states in polyaniline. J Electroanal Chem Interfacial Electrochem 236:199–208.  https://doi.org/10.1016/0022-0728(87)88027-0 CrossRefGoogle Scholar
  118. 118.
    Lapkowski M, Geniés EM (1990) Evidence of two kinds of spin in polyaniline from in situ EPR and electrochemistry: influence of the electrolyte composition. J Electroanal Chem Interfacial Electrochem 279:157–168.  https://doi.org/10.1016/0022-0728(90)85173-3 CrossRefGoogle Scholar
  119. 119.
    MacDiarmid AG, Yang LS, Huang WS, Humphrey BD (1987) Polyaniline: electrochemistry and application to rechargeable batteries. Synth Met 18:393–398.  https://doi.org/10.1016/0379-6779(87)90911-8 CrossRefGoogle Scholar
  120. 120.
    Genoud F, Guglielmi M, Nechtschein M et al (1985) ESR study of electrochemical doping in the conducting polymer polypyrrole. Phys Rev Lett 55:118–121CrossRefPubMedGoogle Scholar
  121. 121.
    Genies EM, Pernaut JM (1984) Spectroelectrochemical studies of the redox and kinetic behaviour of polypyrrole film. Synth Met 10:117–129.  https://doi.org/10.1016/0379-6779(84)90087-0 CrossRefGoogle Scholar
  122. 122.
    Kaufman JH, Colaneri N, Scott JC, Street GB (1984) Evolution of polaron states into bipolarons in polypyrrole. Phys Rev Lett 53:1005–1008.  https://doi.org/10.1103/PhysRevLett.53.1005 CrossRefGoogle Scholar
  123. 123.
    Genies EM, Lapkowski M (1987) Spectroelectrochemical study of polyaniline versus potential in the equilibrium state. J Electroanal Chem 220:67–82.  https://doi.org/10.1016/0022-0728(87)88005-1 CrossRefGoogle Scholar
  124. 124.
    Neudeck A, Petr A, Dunsch L (1999) Redox mechanism of polyaniline studied by simultaneous ESR-UV-vis spectroelectrochemistry. Synth Met 107:143–158.  https://doi.org/10.1016/S0379-6779(99)00135-6 CrossRefGoogle Scholar
  125. 125.
    Neudeck A, Petr A, Dunsch L (1999) Of the ultraviolet-visible spectra of the redox states of conducting polymers by simultaneous use of electron-spin resonance and ultraviolet-visible spectroscopy. J Phys Chem B 103:912–919CrossRefGoogle Scholar
  126. 126.
    Paasch G, Nguyen PH, Fisher AJ (1998) Potential dependence of polaron and bipolaron densities in conducting polymers: theoretical description beyond the Nernst equations. Chem Phys 227:219–241.  https://doi.org/10.1016/S0301-0104(97)00295-4 CrossRefGoogle Scholar
  127. 127.
    Epstein AJ, Ginder JM, Ritcher AF, MacDiarmid AG (1987) Conducting polymers. Alcácer L. D.Reidel, DordrechtGoogle Scholar
  128. 128.
    Staftrom S, Bredas JL, Epstein AJ et al (1987) Polaron lattice in highly conducting polyaniline. Phys Rev Lett 59:1464.  https://doi.org/10.1103/PhysRevLett.59.1464 CrossRefGoogle Scholar
  129. 129.
    Cavazzoni C, Colle R, Farchioni R, Grosso G (2004) Ab initio molecular dynamics study of the structure of emeraldine base polymers. Phys Rev B 69:115213.  https://doi.org/10.1103/PhysRevB.69.115213 CrossRefGoogle Scholar
  130. 130.
    Varela-Alvarez A, J a S, Scuseria GE (2005) Doping of polyaniline by acid-base chemistry: density functional calculations with periodic boundary conditions. J Am Chem Soc 127:11318–11327.  https://doi.org/10.1021/ja051012t CrossRefPubMedGoogle Scholar
  131. 131.
    Alemán C, Ferreira CA, Torras J et al (2008) On the molecular properties of polyaniline: a comprehensive theoretical study. Polymer (Guildf) 49:5169–5176.  https://doi.org/10.1016/j.polymer.2008.09.023 CrossRefGoogle Scholar
  132. 132.
    Canales M, Torras J, Fabregat G et al (2014) Polyaniline Emeraldine salt in the amorphous solid state: polaron versus bipolaron. J Phys Chem B 118:11552–11562.  https://doi.org/10.1021/jp5067583 CrossRefPubMedGoogle Scholar
  133. 133.
    Cavazzoni C, Colle R, Farchioni R, Grosso G (2006) HCl-doped conducting Emeraldine polymer studied by ab initio car-parrinello molecular dynamics. Phys Rev B 74:33103.  https://doi.org/10.1103/PhysRevB.74.033103 CrossRefGoogle Scholar
  134. 134.
    Bernard MC, Hugot-Le Goff A (2006) Quantitative characterization of polyaniline films using Raman spectroscopy. Electrochim Acta 52:595–603.  https://doi.org/10.1016/j.electacta.2006.05.039 CrossRefGoogle Scholar
  135. 135.
    Epstein AJ, Macdiarmid AG (1988) Protonation of emeraldine: formation of a granular polaronic polymeric metal. Mol Cryst Liq Cryst Inc Nonlinear Opt 160:165–173.  https://doi.org/10.1080/15421408808083011 CrossRefGoogle Scholar
  136. 136.
    Cushman RJ, McManus PM, Cheng Yang S (1987) Spectroelectrochemical study of polyaniline: the construction of a pH-potential phase diagram. J Electroanal Chem 219:335–346.  https://doi.org/10.1016/0022-0728(87)85051-9 CrossRefGoogle Scholar
  137. 137.
    Stilwell D, Park SM (1988) Electrochemistry of conductive polymers V. in situ spectroelectrochemical studies of polyaniline films. J Electrochem Soc 136:427–433.  https://doi.org/10.1149/1.2220844 CrossRefGoogle Scholar
  138. 138.
    Chinn D, DuBow J, Li J et al (1995) Comparison of chemically and electrochemically prepared polyaniline films. 2. Optical properties. Chem Mater 7:1510–1518.  https://doi.org/10.1021/cm00056a017 CrossRefGoogle Scholar
  139. 139.
    Nekrasov AA, Ivanov VF, Vannikov AV (2000) Analysis of the structure of polyaniline absorption spectra based on spectroelectrochemical data. J Electroanal Chem 482:11–17.  https://doi.org/10.1016/S0022-0728(00)00005-X CrossRefGoogle Scholar
  140. 140.
    Nekrasov AA, Ivanov VF, Vannikov AV (2001) Effect of pH on the structure of absorption spectra of highly protonated polyaniline analyzed by the Alentsev-Fock method. Electrochim Acta 46:4051–4056.  https://doi.org/10.1016/S0013-4686(01)00693-4 CrossRefGoogle Scholar
  141. 141.
    Kankare J, Kupila E-L (1992) In-situ conductance measurement during electropolymerization. J Electroanal Chem 322:167–181.  https://doi.org/10.1016/0022-0728(92)80074-E CrossRefGoogle Scholar
  142. 142.
    Chiang J-C, MacDiarmid AG (1986) ‘Polyaniline’: protonic acid doping of the emeraldine form to the metallic regime. Synth Met 13:193–205.  https://doi.org/10.1016/0379-6779(86)90070-6 CrossRefGoogle Scholar
  143. 143.
    Epstein AJ, Ginder JM, Zuo F et al (1987) Insulator-to-metal transition in polyaniline: effect of protonation in emeraldine. Synth Met 21:63–70.  https://doi.org/10.1016/0379-6779(87)90067-1 CrossRefGoogle Scholar
  144. 144.
    Luthra V, Singh R, Gupta SK, Mansingh A (2003) Mechanism of dc conduction in polyaniline doped with sulfuric acid. Curr Appl Phys 3:219–222. doi:  https://doi.org/10.1016/S1567-1739(02)00205–5
  145. 145.
    McManus PM, Cushman RJ, Yang SC (1987) Influence of oxidation and protonation on the electrical conductivity of polyaniline. J Phys Chem 91:744–747.  https://doi.org/10.1021/j100287a050 CrossRefGoogle Scholar
  146. 146.
    Paul EW, Ricco AJ, Wrighton MS (1985) Resistance of polyaniline films as a function of electrochemical potential and the fabrication of polyaniline-based microelectronic devices. J Phys Chem 89:1441–1447.  https://doi.org/10.1021/j100254a028 CrossRefGoogle Scholar
  147. 147.
    Ofer D, Crooks RM, Wrighton MS (1990) Potential dependence of the conductivity of highly oxidized poly thiophenes, polypyrroles, and poly aniline: finite windows of high conductivity. J Am Chem Soc 112:7869–7879.  https://doi.org/10.1021/ja00178a004 CrossRefGoogle Scholar
  148. 148.
    Talaie A (1994) Electronic Propenies of novel conducting polypyrrole and polyaniline materials. Wollongong UniversityGoogle Scholar
  149. 149.
    Song E, Choi J-W (2012) An on-chip chemiresistive polyaniline nanowire-based pH sensor with self-calibration capability. 2012 Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.Google Scholar
  150. 150.
    Chen F, He J, Nuckolls C et al (2005) A molecular switch based on potential-induced changes of oxidation state. Nano Lett 5:503–506.  https://doi.org/10.1021/nl0478474 CrossRefPubMedGoogle Scholar
  151. 151.
    Toušek J, Toušková J, Chomutová R et al (2017) Mobility of holes and polarons in polyaniline films assessed by frequency-dependent impedance and charge extraction by linearly increasing voltage. Synth Met 234:161–165.  https://doi.org/10.1016/j.synthmet.2017.10.015 CrossRefGoogle Scholar
  152. 152.
    Babu VJ, Vempati S, Ramakrishna S (2013) Conducting polyaniline-electrical charge transportation. Mater Sci Appl 04:1–10.  https://doi.org/10.4236/msa.2013.41001 CrossRefGoogle Scholar
  153. 153.
    Stejskal J, Bogomolova OE, Blinova NV et al (2009) Mixed electron and proton conductivity of polyaniline films in aqueous solutions of acids: beyond the 1000 S cm-1 limit. Polym Int 58:872–879.  https://doi.org/10.1002/pi.2605 CrossRefGoogle Scholar
  154. 154.
    Hu C-C, Chu C-H (2001) Electrochemical impedance characterization of polyaniline-coated graphite electrodes for electrochemical capacitors — effects of film coverage/thickness and anions. J Electroanal Chem 503:105–116.  https://doi.org/10.1016/S0022-0728(01)00385-0 CrossRefGoogle Scholar
  155. 155.
    Lizarraga L, Andrade EM, Molina FV (2004) Swelling and volume changes of polyaniline upon redox switching. J Electroanal Chem 561:127–135.  https://doi.org/10.1016/j.jelechem.2003.07.026 CrossRefGoogle Scholar
  156. 156.
    Lizarraga L, Andrade EM, Molina FV (2007) Anion exchange influence on the electrochemomechanical properties of polyaniline. Electrochim Acta 53:538–548.  https://doi.org/10.1016/j.electacta.2007.07.030 CrossRefGoogle Scholar
  157. 157.
    Inzelt G (2000) Simultaneous chronoamperometric and quartz crystal microbalance studies of redox transformations of polyaniline films. Electrochim Acta 45:3865–3876.  https://doi.org/10.1016/S0013-4686(00)00455-2 CrossRefGoogle Scholar
  158. 158.
    Inzelt G (1995) Characterization of modified electrodes by electrochemical quartz crystal microbalance, radiotracer technique and impedance spectroscopy. Electroanalysis 7:895–903.  https://doi.org/10.1002/elan.1140070918 CrossRefGoogle Scholar
  159. 159.
    Pruneanu S, Csahók E, Kertész V, Inzelt G (1998) Electrochemical quartz crystal microbalance study of the influence of the solution composition on the behaviour of poly(aniline) electrodes. Electrochim Acta 43:2305–2323.  https://doi.org/10.1016/S0013-4686(97)10154-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Juliana Scotto
    • 1
    • 2
  • Waldemar A. Marmisollé
    • 1
  • Dionisio Posadas
    • 1
    Email author
  1. 1.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA). Facultad de Ciencias ExactasUniversidad Nacional de La Plata, CCT La Plata-CONICETLa PlataArgentina
  2. 2.Instituto de Ciencias de la SaludUniversidad Nacional Arturo JauretcheFlorencio VarelaArgentina

Personalised recommendations