Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 6, pp 1811–1827 | Cite as

Electrochemically roughened silver surface versus fractal leaf-shaped silver crystals for surface-enhanced Raman scattering investigation of polypyrrole

  • A. El Guerraf
  • Z. Aouzal
  • M. Bouabdallaoui
  • S. Ben Jadi
  • A. El Jaouhari
  • R. Wang
  • M. Bazzaoui
  • E.A. BazzaouiEmail author
Original Paper
  • 27 Downloads

Abstract

In surface-enhanced Raman scattering (SERS) analyses, the surface condition of the metal substrate plays a decisive role in the quality of the recorded Raman spectra. In this contribution, we will examine the SERS spectra of polypyrrole (PPy) in contact with two types of silver substrates prepared according to two different protocols: (i) electrochemical, leading to Ag surface with coral-like structure, and (ii) photochemical, giving fractal leaf-shaped Ag clusters. On the one hand, PPy films were electrochemically synthesized on massive silver electrodes previously SERS-activated according to the well-known oxidation-reduction cycle (ORC) procedure. The Raman spectra of the obtained samples exhibit significant SERS effect with high signal-to-noise ratio in comparison with those recorded in the same conditions on platinum. This made it possible to perform an ex situ rovibrational characterization of PPy, to determine the orientation and anchoring mode of the polymer chains in the coating/electrode interfacial region, and to monitor, in situ, some structural changes during the electrochemical doping-undoping process. On the other hand, to further improve the SERS enhancement factor, a second photochemical approach has been developed to prepare PPy chains embedded in a fractal structure made of leaf-shaped silver crystals. Here, the size and growth mode of the silver clusters give rise to a larger number of “hot spots” that are responsible for the huge Raman intensity enhancement.

Keywords

Polypyrrole Surface-enhanced Raman scattering Fractal silver crystals Roughened silver electrodes 

Notes

Funding information

This work was supported by the MESRSFC and CNRST (Morocco) under grant No. PPR/30/2015.

References

  1. 1.
    Alvarez-Puebla RA, Liz-Marzán LM (2010) SERS-based diagnosis and biodetection. Small 6(5):604–610Google Scholar
  2. 2.
    Brazhe NA, Abdali S, Brazhe AR, Luneva OG, Bryzgalova NY, Parshina EY, Sosnovtseva OV, Maksimov GV (2009) New insight into erythrocyte through in vivo surface-enhanced Raman spectroscopy. Biophys J 97(12):3206–3214Google Scholar
  3. 3.
    Kneipp J, Kneipp H, Wittig B, Kneipp K (2007) One-and two-photon excited optical pH probing for cells using surface-enhanced Raman and hyper-Raman nanosensors. Nano Lett 7(9):2819–2823Google Scholar
  4. 4.
    Syme CD, Sirimuthu NM, Faley SL, Cooper JM (2010) SERS mapping of nanoparticle labels in single cells using a microfluidic chip. Chem Commun 46(42):7921–7923Google Scholar
  5. 5.
    Huang Z, Gu X, Cao Q, Hu P, Hao J, Li J, Tang X (2012) Catalytically active single-atom sites fabricated from silver particles. Angew Chem 124(17):4274–4279Google Scholar
  6. 6.
    Pradhan N, Pal A, Pal T (2002) Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloid Surface A 196(2-3):247–257Google Scholar
  7. 7.
    Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34(3):181–190Google Scholar
  8. 8.
    Layani M, Gruchko M, Milo O, Balberg I, Azulay D, Magdassi S (2009) Transparent conductive coatings by printing coffee ring arrays obtained at room temperature. ACS Nano 3(11):3537–3542Google Scholar
  9. 9.
    Magdassi S, Grouchko M, Toker D, Kamyshny A, Balberg I, Millo O (2005) Ring stain effect at room temperature in silver nanoparticles yields high electrical conductivity. Langmuir 21(23):10264–10267Google Scholar
  10. 10.
    Kamyshny A, Ben-Moshe M, Aviezer S, Magdassi S (2005) Ink-jet printing of metallic nanoparticles and microemulsions. Macromol Rapid Commun 26(4):281–288Google Scholar
  11. 11.
    Pietrobon B, Kitaev V (2008) Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties. Chem Mater 20(16):5186–5190Google Scholar
  12. 12.
    Leopold N, Lendl B (2003) A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J Phys Chem B 107(24):5723–5727Google Scholar
  13. 13.
    Moskovits M (2005) Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc 36(6-7):485–496Google Scholar
  14. 14.
    Gong X, Bao Y, Qiu C, Jiang C (2012) Individual nanostructured materials: fabrication and surface-enhanced Raman scattering. Chem Commun 48(56):7003–7018Google Scholar
  15. 15.
    Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166Google Scholar
  16. 16.
    Kneipp K, Wang Y, Kneipp H, Itzkan I, Dasari RR, Feld MS (1996) Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering. Phys Rev Lett 76(14):2444–2447Google Scholar
  17. 17.
    Emory SR, Haskins WE, Nie S (1998) Direct observation of size-dependent optical enhancement in single metal nanoparticles. J Am Chem Soc 120(31):8009–8010Google Scholar
  18. 18.
    Krug JT, Wang GD, Emory SR, Nie S (1999) Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals. J Am Chem Soc 121(39):9208–9214Google Scholar
  19. 19.
    Gunnarsson L, Petronis S, Kasemo B, Xu H, Bjerneld J, Käll M (1999) Optimizing nanofabricated substrates for surface enhanced Raman scattering. Nanostruct Mater 12(5-8):783–788Google Scholar
  20. 20.
    Eliasson C, Lorén A, Murty KVGK, Josefson M, Käll M, Abrahamsson J, Abrahamsson K (2001) Multivariate evaluation of doxorubicin surface-enhanced Raman spectra. Spectrochim Acta A 57(9):1907–1915Google Scholar
  21. 21.
    Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106Google Scholar
  22. 22.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667–1670Google Scholar
  23. 23.
    Kneipp K, Kneipp H, Kartha VB, Manoharan R, Deinum G, Itzkan I, Dasari RR, Feld MS (1998) Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS). Phys Rev E 57:6281–6284Google Scholar
  24. 24.
    Xu H, Bjerneld EJ, Käll M, Börjesson L (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83(21):4357–4360Google Scholar
  25. 25.
    Michaels AM, Jiang J, Brus L (2000) Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. J Phys Chem B 104(50):11965–11971Google Scholar
  26. 26.
    Bosnick KA, Jiang J, Brus LE (2002) Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates. J Phys Chem B 106(33):8096–8099Google Scholar
  27. 27.
    Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57(3):783–826Google Scholar
  28. 28.
    Shalaev VM, Stockman MI, Botet R (1992) Resonant excitations and nonlinear optics of fractals. Physica A 185(1-4):181–186Google Scholar
  29. 29.
    Shalaev VM, Botet R, Tsai DP, Kovacs J, Moskovits M (1994) Fractals: localization of dipole excitations and giant optical polarizabilities. Physica A 207(1-3):197–207Google Scholar
  30. 30.
    Stockman MI, Pandey LN, Muratov LS, George TF (1994) Giant fluctuations of local optical fields in fractal clusters. Phys Rev Lett 72(15):2486–2489Google Scholar
  31. 31.
    Shalaev VM, Botet R, Mercer J, Stechel EB (1996) Optical properties of self-affine thin films. Phys Rev B 54(11):8235–8242Google Scholar
  32. 32.
    Stockman MI (1997) Inhomogeneous eigenmode localization, chaos, and correlations in large disordered clusters. Phys Rev E 56(6):6494–6507Google Scholar
  33. 33.
    Shalaev VM, Sarychev AK (1998) Nonlinear optics of random metal-dielectric films. Phys Rev B 57(20):13265–13288Google Scholar
  34. 34.
    Grésillon S, Aigouy L, Boccara AC, Rivoal JC, Quelin X, Desmarest C, Gadenne P, Shubin AV, Sarychev AK, Shalaev VM (1999) Experimental observation of localized optical excitations in random metal-dielectric films. Phys Rev Lett 82(22):4520–4523Google Scholar
  35. 35.
    Su X, Zhang J, Sun L, Koo TW, Chan S, Sundararajan N, Yamakawa M, Berlin AA (2005) Composite organic− inorganic nanoparticles (COINs) with chemically encoded optical signatures. Nano Lett 5(1):49–54Google Scholar
  36. 36.
    Stuart DA, Yonzon CR, Zhang X, Lyandres O, Shah NC, Glucksberg MR, Walsh JT, Van Duyne RP (2005) Glucose sensing using near-infrared surface-enhanced Raman spectroscopy: gold surfaces, 10-day stability, and improved accuracy. Anal Chem 77(13):4013–4019Google Scholar
  37. 37.
    Bazzaoui EA, Levi G, Aeiyach S, Aubard J, Marsault JP, Lacaze PC (1995) SERS spectra of polythiophene in doped and undoped states. J Phys Chem 99(17):6628–6634Google Scholar
  38. 38.
    Bazzaoui EA, Aeiyach S, Aubard J, Felidj N, Lacaze PC, Sakmeche N, Levi G (1998) Electrochemical procedure for obtaining surface-enhanced raman scattering active polythiophene films on platinum. J Raman Spectrosc 29(3):177–183Google Scholar
  39. 39.
    Bazzaoui EA, Aeiyach S, Aubard J, Felidj N, Levi G, Sakmeche N, Lacaze PC (1998) New electrochemical procedure for obtaining surface enhanced Raman scattering active polythiophene films on platinum. J Chim Phys Physicochim Biol 95(6):1526–1530Google Scholar
  40. 40.
    Bazzaoui EA, Bazzaoui M, Aubard J, Lomas JS, Félidj N, Lévi G (2001) Surface-enhanced Raman scattering study of polyalkylthiophenes on gold electrodes and in silver colloids. Synth Met 123(2):299–309Google Scholar
  41. 41.
    Bazzaoui EA, Aubard J, Felidj N, Laurent G, Levi G (2005) Ex situ and in situ SERS analyses of polybithiophene using roughened ag and cu electrodes and multilayer SERS-active systems. J Raman Spectrosc 36(8):817–823Google Scholar
  42. 42.
    Bazzaoui EA, Aubard J, Bazzaoui M, Lévi G (2007) Application of surface-enhanced Raman scattering for ex situ and in situ investigations of Polythiophene derivatives. Spectrosc Lett 40(5):723–740Google Scholar
  43. 43.
    Aouzal Z, Bouabdallaoui M, Jadi SB, El Jaouhari A, Bazzaoui M, Wang R, Bazzaoui EA (2017) In situ surface-enhanced Raman scattering investigation of poly (5-amino-1, 4-naphthoquinone) using roughened electrodes and metal colloids. Synth Met 231:80–88Google Scholar
  44. 44.
    Sakamoto M, Fujistuka M, Majima T (2009) Light as a construction tool of metal nanoparticles: synthesis and mechanism. J Photochem Photobiol C 10(1):33–56Google Scholar
  45. 45.
    Singh A, Salmi Z, Joshi N, Jha P, Decorse P, Lecoq H, Lau-Truong S, Jouini M, Aswal DK, Chehimi MM (2013) Electrochemical investigation of free-standing polypyrrole–silver nanocomposite films: a substrate free electrode material for supercapacitors. RSC Adv 3(46):24567–24575Google Scholar
  46. 46.
    Zang L, Qiu J, Yang C, Sakai E (2016) Preparation and application of conducting polymer/ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization. Sci Rep 6(1):20470–20182Google Scholar
  47. 47.
    Claro F, Fuchs R (1991) Collective surface modes in a fractal cluster of spheres. Phys Rev B 44(9):4109–4116Google Scholar
  48. 48.
    Stockman MI, Shalaev VM, Moskovits M, Botet R, George TF (1992) Enhanced Raman scattering by fractal clusters: scale-invariant theory. Phys Rev B 46(5):2821–2830Google Scholar
  49. 49.
    Gersten J, Nitzan A (1981) Spectroscopic properties of molecules interacting with small dielectric particles. J Chem Phys 75(3):1139–1152Google Scholar
  50. 50.
    Moskovits M (1978) Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J Chem Phys 69(9):4159–4161Google Scholar
  51. 51.
    McCall SL, Platzman PM, Wolff PA (1980) Surface enhanced Raman scattering. Phys Lett A 77(5):381–383Google Scholar
  52. 52.
    Rojas R, Claro F (1993) Theory of surface enhanced Raman scattering in colloids. J Chem Phys 98(2):998–1006Google Scholar
  53. 53.
    Aravind PK, Metiu H (1980) The enhancement of Raman and fluorescent intensity by small surface roughness. Changes in dipole emission. Chem Phys Lett 74(2):301–305Google Scholar
  54. 54.
    Aroca R (2006) Surface-enhanced vibrational spectroscopy. John Wiley & SonsGoogle Scholar
  55. 55.
    Shalaev VM (1996) Electromagnetic properties of small-particle composites. Phys Rep 272(2-3):61–137Google Scholar
  56. 56.
    Roy PK, Huang YF, Chattopadhyay S (2013) Detection of melamine on fractals of unmodified gold nanoparticles by surface-enhanced Raman scattering. J Biomed Opt 19(1):011002Google Scholar
  57. 57.
    Amarandei G, O’Dwyer C, Arshak A, Corcoran D (2013) Fractal patterning of nanoparticles on polymer films and their Sers capabilities. ACS Appl Mater Interfaces 5(17):8655–8662Google Scholar
  58. 58.
    Hou C, Meng G, Huang Q, Zhu C, Huang Z, Chen B, Sun K (2014) Ag-nanoparticle-decorated au-fractal patterns on bowl-like-dimple arrays on Al foil as an effective SERS substrate for the rapid detection of PCBs. Chem Commun 50(5):569–571Google Scholar
  59. 59.
    Qiu T, Wu XL, Shen JC, Xia Y, Shen PN, Chu PK (2008) Silver fractal networks for surface-enhanced Raman scattering substrates. Appl Surf Sci 254(17):5399–5402Google Scholar
  60. 60.
    Xu D, Dong J, Zhang S, Chen J (2018) Fractal theory study and SERS effect of centimeter level of copper nanobranch detectors by solid-state ionics method. Sensors Actuators A Phys 271:18–23Google Scholar
  61. 61.
    Rodriguez I, Scharifker BR, Mostany J (2000) In situ FTIR study of redox and overoxidation processes in polypyrrole films. J Electroanal Chem 491(1-2):117–125Google Scholar
  62. 62.
    Otero TF, Marquez M, Suarez IJ (2004) Polypyrrole: diffusion coefficients and degradation by overoxidation. J Phys Chem B 108(39):15429–15433Google Scholar
  63. 63.
    Fernández I, Trueba M, Nunez CA, Rieumont J (2005) Some features of the overoxidation of polypyrrole synthesized on austenitic stainless steel electrodes in aqueous nitrate solutions. Surf Coat Technol 191(1):134–139Google Scholar
  64. 64.
    Liu AS, Oliveira MA (2007) Electrodeposition of polypyrrole films on aluminum from tartrate aqueous solution. J Braz Chem Soc 18(1):143–152Google Scholar
  65. 65.
    Faulques E, Wallnöfer W, Kuzmany H (1989) Vibrational analysis of heterocyclic polymers: a comparative study of polythiophene, polypyrrole, and polyisothianaphtene. J Chem Phys 90(12):7585–7593Google Scholar
  66. 66.
    Hagiwara T, Hirasaka M, Sato K, Yamaura M (1990) Enhancement of the electrical conductivity of polypyrrole film by stretching: influence of the polymerization conditions. Synth Met 36(2):241–252Google Scholar
  67. 67.
    Liu YC, Hwang BJ (2000) Identification of oxidized polypyrrole on Raman spectrum. Synth Met 113(1-2):203–207Google Scholar
  68. 68.
    Ye S, Fang L, Lu Y (2009) Contribution of charge-transfer effect to surface-enhanced IR for ag@ PPy nanoparticles. Phys Chem Chem Phys 11(14):2480–2484Google Scholar
  69. 69.
    Nuzzo RG, Allara DL (1983) Adsorption of bifunctional organic disulfides on gold surfaces. J Am Chem Soc 105(13):4481–4483Google Scholar
  70. 70.
    Li TT, Weaver MJ (1984) Intramolecular electron transfer at metal surfaces. 4. Dependence of tunneling probability upon donor-acceptor separation distance. J Am Chem Soc 106(20):6107–6108Google Scholar
  71. 71.
    Nuzzo RG, Fusco FA, Allara DL (1987) Spontaneously organized molecular assemblies. 3. Preparation and properties of solution adsorbed monolayers of organic disulfides on gold surfaces. J Am Chem Soc 109(8):2358–2368Google Scholar
  72. 72.
    Finklea HO, Avery S, Lynch M, Furtsch T (1987) Blocking oriented monolayers of alkyl mercaptans on gold electrodes. Langmuir 3(3):409–413Google Scholar
  73. 73.
    Porter MD, Bright TB, Allara DL, Chidsey CE (1987) Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. J Am Chem Soc 109(12):3559–3568Google Scholar
  74. 74.
    Stouffer JM, McCarthy TJ (1988) Polymer monolayers prepared by the spontaneous adsorption of sulfur-functionalized polystyrene on gold surfaces. Macromolecules 21(5):1204–1208Google Scholar
  75. 75.
    Bell RA, Kramer JR (1999) Structural chemistry and geochemistry of silver-sulfur compounds: critical review. Environ Toxicol Chem 18:9–22Google Scholar
  76. 76.
    Nath S, Ghosh SK, Kundu S, Praharaj S, Panigrahi S, Pal T (2006) Is gold really softer than silver? HSAB principle revisited. J Nanopart Res 8(1):111–116Google Scholar
  77. 77.
    Nair S, Tatarchuk BJ (2010) Supported silver adsorbents for selective removal of sulfur species from hydrocarbon fuels. Fuel 89(11):3218–3225Google Scholar
  78. 78.
    Bukowska J, Jackowska K (1990) In situ Raman studies of polypyrrole and polythiophene films on Pt electrodes. Synth Met 35(1-2):143–150Google Scholar
  79. 79.
    Meisterle P, Kuzmany H, Nauer G (1984) In situ Raman spectroscopy of the electrochemical doping process in polyacetylene. Phys Rev B 29(10):6008–6011Google Scholar
  80. 80.
    Kuzmany H (1985) The particle in the box model for resonance Raman scattering in polyacetylene. Pure Appl Chem 57(2):235–246Google Scholar
  81. 81.
    Marsault JP, Fraoua K, Aeiyach S, Aubard J, Levi G, Lacaze PC (1992) Étude structurale par spectrométrie Raman in situ de films minces de polypyrrole électropolymérisé sur différents substrats. J Chim Phys 89:1167–1172Google Scholar
  82. 82.
    Virdee HR, Hester RE (1988) In situ resonance Raman spectroscopic investigation of a Polypyrrole modified gold electrode. Croat Chem Acta 61:357–374Google Scholar
  83. 83.
    Liu YC, Yang KH, Lin LH, Tsai JF (2008) Studies of thermal decay of electropolymerized polypyrrole using in situ surface-enhanced Raman spectroscopy. Electrochem Commun 10(1):161–164Google Scholar
  84. 84.
    Schantz S, Torell LM, Stevens JR (1988) Raman and Brillouin scattering of LiClO4 complexed in poly (propylene-glycol). J Appl Phys 64(4):2038–2043Google Scholar
  85. 85.
    Atanasoska L, Naoi K, Smyrl WH (1992) XPS studies on conducting polymers: polypyrrole films doped with perchlorate and polymeric anions. Chem Mater 4(5):988–994Google Scholar
  86. 86.
    Dong S, Ding J (1987) Study on polypyrrole film by electrochemical polymerization in aqueous solution. Synth Met 20(1):119–124Google Scholar
  87. 87.
    Liang W, Lei J, Martin CR (1992) Effect of synthesis temperature on the structure, doping level and charge-transport properties of polypyrrole. Synth Met 52(2):227–239Google Scholar
  88. 88.
    Pfluger P, Street GB (1984) Chemical, electronic, and structural properties of conducting heterocyclic polymers: a view by XPS. J Chem Phys 80(1):544–553Google Scholar
  89. 89.
    Ribó JM, Dicko A, Tura JM, Bloor D (1991) Chemical structure of polypyrrole: X-ray photoelectron spectroscopy of polypyrrole with 5-yliden-3-pyrrolin-2-one end groups. Polymer 32(4):728–732Google Scholar
  90. 90.
    Tabačiarová J, Mičušík M, Fedorko P, Omastová M (2015) Study of polypyrrole aging by XPS, FTIR and conductivity measurements. Polym Degrad Stab 120:392–401Google Scholar
  91. 91.
    Clark DT, Lilley DMJ (1971) Molecular core binding energies for some five membered ring heterocycles as determined by X-ray photoelectron spectroscopy. Chem Phys Lett 9(3):234–237Google Scholar
  92. 92.
    Eaves JG, Munro HS, Parker D (1987) An ESCA study of polypyrole oxidation. Polym Commun 28:38–40Google Scholar
  93. 93.
    Lei J, Liang w MCR (1992) Infrared investigations of pristine, doped and partially doped polypyrrole. Synth Met 48(3):301–312Google Scholar
  94. 94.
    Ferreira CA, Aeiyach S, Delamar M, Lacaze PC (1990) Electropolymerization of pyrrole on iron electrodes: influence of solvent and electrolyte on the nature of the deposits. J Electroanal Chem 284:351–369Google Scholar
  95. 95.
    Zaid B, Aeiyach S, Lacaze PC (1994) Electropolymerization of pyrrole in propylene carbonate on zinc electrodes modified by heteropolyanions. Synth Met 65(1):27–34Google Scholar
  96. 96.
    Schweiger B, Kim J, Kim YJ, Ulbricht M (2015) Electropolymerized molecularly imprinted polypyrrole film for sensing of clofibric acid. Sensors 15(3):4870–4889Google Scholar
  97. 97.
    Bouabdallaoui M, Aouzal Z, Ben Jadi S, El Jaouhari A, Bazzaoui M, Lévi G, Aubard J, Bazzaoui EA (2017) X-ray photoelectron and in situ and ex situ resonance Raman spectroscopic investigations of polythiophene overoxidation. J Solid State Electrochem 21(12):3519–3532Google Scholar
  98. 98.
    Chang M, Kim T, Park HW, Kang M, Reichmanis E, Yoon H (2012) Imparting chemical stability in nanoparticulate silver via a conjugated polymer casing approach. ACS Appl Mater Interfaces 4(8):4357–4365Google Scholar
  99. 99.
    Morea G, Sabbatini L, Zambonin PG, Swift AJ, West RH, Vickerman JC (1991) Modification of polybithiophene by electrochemical cycling studied by ToF-SIMS and XPS. Macromolecules 24(12):3630–3637Google Scholar
  100. 100.
    Morea G, Sabbatini L, West RH, Vickerman JC (1992) Surface characterization (XPS and SIMS) of emersed polybithiophene electrodes. Surf Interface Anal 18(6):421–429Google Scholar
  101. 101.
    Lin H, Mock J, Smith D, Gao T, Sailor MJ (2004) Surface-enhanced Raman scattering from silver-plated porous silicon. J Phys Chem B 108(31):11654–11659Google Scholar
  102. 102.
    Hao E, Bailey RC, Schatz GC, Hupp JT, Li S (2004) Synthesis and optical properties of “branched” gold nanocrystals. Nano Lett 4(2):327–330Google Scholar
  103. 103.
    Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huser TH, Nordlander P, Halas NJ (2005) Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates. Nano Lett 5(8):1569–1574Google Scholar
  104. 104.
    Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K (2006) In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Lett 6(10):2225–2231Google Scholar
  105. 105.
    Xu H (2004) Theoretical study of coated spherical metallic nanoparticles for single-molecule surface-enhanced spectroscopy. Appl Phys Lett 85(24):5980–5982Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • A. El Guerraf
    • 1
  • Z. Aouzal
    • 1
  • M. Bouabdallaoui
    • 1
  • S. Ben Jadi
    • 2
  • A. El Jaouhari
    • 2
  • R. Wang
    • 3
  • M. Bazzaoui
    • 2
  • E.A. Bazzaoui
    • 1
    Email author
  1. 1.Laboratoire de Chimie des Matériaux (LCM), Faculté des SciencesUniversité Mohammed 1erOujdaMorocco
  2. 2.Laboratoire Matériaux et Environnement (LME), Faculté des SciencesUniversité Ibn ZohrAgadirMorocco
  3. 3.Department of Mechanical Systems Engineering, Faculty of EngineeringHiroshima Institute of TechnologyHiroshimaJapan

Personalised recommendations