Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 6, pp 1829–1836 | Cite as

Evaporation induced uniform polypyrrole coating on CuO arrays for free-standing high lithium storage anode

  • Yulin Zhou
  • Xiujuan JinEmail author
  • Jing Ni
  • Shaofeng Zhang
  • Jiao Yang
  • Pengfei Liu
  • Zhaowu Wang
  • Jianfei LeiEmail author
Original Paper
  • 62 Downloads

Abstract

Polypyrrole (PPy) used as popular coatings can improve the electrochemical performance of electrodes greatly; however, uniform coatings of PPy on nanostructures is a challenging task in a solution system. Substitution for liquid phase polymerization reaction, herein a developed evaporation method is reported to make pyrrole vapor in situ polymerization on CuO arrays for the uniform PPy coatings. With the help of this uniform PPy coatings, the unique structure of arrayed CuO film can well maintain the stability of mechanical structures and has rapid transmission of lithium ions and electrons during charge/discharge processes, hence harvesting a high lithium storage. Electrochemical tests indicate that PPy can not only enhance the specific capacities of CuO anodes greatly but also improve the cyclic stability at a high-current density. The specific capacity of the CuO@PPy integrated anode can be up to 561 mAh g−1 at 1 C after 100 cycles, which is increased by almost 33% than that of the pure CuO anode.

Keywords

Electrochemistry Lithium ion battery Conductive polymer Free-standing Cupric oxide 

Notes

Funding information

This work is financially supported by the Natural Science Foundation of Henan Province (Grant no. 162300410093) and the Key Science Foundation of Higher Education of Henan Province (Grant no. 19A140008).

References

  1. 1.
    Jiang Y, Jiang Z, Jiang ZJ, Liu M (2018) Phase and morphology evolution induced lithium storage capacity enhancement of porous CoO nanowires intertwined with reduced graphene oxide nanosheets. ChemElectroChem 5(23):3679–3687CrossRefGoogle Scholar
  2. 2.
    Gou Q, Li C, Zhong W, Zhang X, Dong Q, Lei C (2019) Hierarchical structured porous N-doped carbon coating MnO microspheres with enhanced electrochemical performances as anode materials for lithium-ion batteries. Electrochim Acta 296:730–737CrossRefGoogle Scholar
  3. 3.
    Li F, Luo G, Yu J, Huang W, Xu D, Chen W, Huang X, Yang S, Fang Y, Yu X (2019) Terminal hollowed Fe2O3@SnO2 heterojunction nanorods anode materials with enhanced performance for lithium-ion battery. J Alloy Compd 773:778–787CrossRefGoogle Scholar
  4. 4.
    Park GD, Hong JH, Park SK, Kang YC (2019) Strategy for synthesizing mesoporous NiO Polyhedra with empty nanovoids via oxidation of NiSe polyhedra by nanoscale Kirkendall diffusion and their superior lithium-ion storage performance. Appl Surf Sci 464:597–605CrossRefGoogle Scholar
  5. 5.
    Hou Q, Man Q, Liu P, Jin R, Cui Y, Li G, Gao S (2019) Encapsulation of Fe2O3/NiO and Fe2O3/Co3O4 nanosheets into conductive polypyrrole for superior lithium ion storage. Electrochim Acta 296:438–449CrossRefGoogle Scholar
  6. 6.
    Cheng YW, Chen CH, Yang SW, Li YC, Peng BL, Chang CC, Wang RC, Liu CP (2018) Freestanding three-dimensional CuO/NiO Core–Shell nanowire arrays as high-performance lithium-ion battery anode. Sci Rep-Uk 8(1):18034CrossRefGoogle Scholar
  7. 7.
    Tan G, Wu F, Yuan Y, Chen R, Zhao T, Yao Y, Qian J, Liu J, Ye Y, Yassar R, Lu J, Amine K (2016) Freestanding three-dimensional core–shell nanoarrays for lithium-ion battery anodes. Nat Commun 7(1):11774CrossRefGoogle Scholar
  8. 8.
    Gusain R, Kumar P, Sharma OP, Jain SL, Khatri OP (2016) Reduced graphene oxide-CuO nanocomposites for photocatalytic conversion of CO2 into methanol under visible light irradiation. Appl Catal B-Environ 181:352–362CrossRefGoogle Scholar
  9. 9.
    Chen X, Chu D, Wang L (2019) One-step and green synthesis of novel hierarchical hydrangea flower-like CuO nanostructures with enhanced photocatalytic activity. Phys E 106:194–199CrossRefGoogle Scholar
  10. 10.
    Zhang X, Zhou J, Dou W, Wang J, Mu X, Zhang Y, Abas A, Su Q, Lan W, Xie E, Zhang C (2018) Room-temperature vertically-aligned copper oxide nanoblades synthesized by electrochemical restructuring of copper hydroxide nanorods: an electrode for high energy density hybrid device. J Power Sources 383:124–132CrossRefGoogle Scholar
  11. 11.
    Peng HJ, Hao GX, Chu ZH, He CL, Lin XM, Cai YP (2017) Mesoporous spindle-like hollow CuO/C fabricated from a cu-based metal-organic framework as anodes for high-performance lithium storage. J Alloy Compd 727:1020–1026CrossRefGoogle Scholar
  12. 12.
    Chen Z, Hou Z, Xu W, Chen Y, Li Z, Chen L, Wang W (2019) Ultrafine CuO nanoparticles decorated activated tube-like carbon as advanced anode for lithium-ion batteries. Electrochim Acta 296:206–213CrossRefGoogle Scholar
  13. 13.
    Wang Z, Su F, Madhavi S, Lou XW (2011) CuO nanostructures supported on cu substrate as integrated electrodes for highly reversible lithium storage. Nanoscale 3(4):1618–1623CrossRefGoogle Scholar
  14. 14.
    Wu R, Qian X, Yu F, Liu H, Zhou K, Wei J, Huang Y (2013) MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials. J Mater Chem A 1(37):11126–11129CrossRefGoogle Scholar
  15. 15.
    Reddy MV, Rao GVS, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113(7):5364–5457CrossRefGoogle Scholar
  16. 16.
    Lee KT, Cho J (2011) Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries. Nano Today 6(1):28–41CrossRefGoogle Scholar
  17. 17.
    Wu HB, Chen JS, Hng HH, Lou XW (2012) Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4(8):2526–2542CrossRefGoogle Scholar
  18. 18.
    Gao S, Yang S, Shu J, Zhang S, Li Z, Jiang K (2008) Green fabrication of hierarchical CuO hollow micro/nanostructures and enhanced performance as electrode materials for lithium-ion batteries. J Phys Chem C 112:19324–19328CrossRefGoogle Scholar
  19. 19.
    Cheong JY, Kim C, Jung JW, Yoon KR, Kim ID (2018) Porous SnO2-CuO nanotubes for highly reversible lithium storage. J Power Sources 373:11–19CrossRefGoogle Scholar
  20. 20.
    Wang Z, Zhang Y, Xiong H, Qin C, Zhao W, Liu X (2018) Yucca fern shaped CuO nanowires on cu foam for remitting capacity fading of Li-ion battery anodes. Sci Rep-Uk 8(1):6530CrossRefGoogle Scholar
  21. 21.
    Wang G, Huang J, Chen S, Gao Y, Cao D (2011) Preparation and supercapacitance of CuO nanosheet arrays grown on nickel foam. J Power Sources 196(13):5756–5760CrossRefGoogle Scholar
  22. 22.
    Li Y, Chang S, Liu X, Huang J, Yin J, Wang G, Cao D (2012) Nanostructured CuO directly grown on copper foam and their supercapacitance performance. Electrochim Acta 85:393–398CrossRefGoogle Scholar
  23. 23.
    Wang C, Wang H, Matios E, Hu X, Li W (2018) A chemically engineered porous copper matrix with cylindrical Core–Shell skeleton as a stable host for metallic sodium anodes. Adv Funct Mater 28(30):1802282CrossRefGoogle Scholar
  24. 24.
    Li Z, Li G, Xu W, Zhou M, Xu C, Shi M, Li F, Chen L, He B (2018) A facile and low-cost strategy to fabricate self-integrated porous leaf-like CuO nanoplate array-based anode for high-performance lithium-ion batteries. ChemElectroChem 5(19):2774–2780CrossRefGoogle Scholar
  25. 25.
    Chen X, Zhang N, Sun K (2012) Facile fabrication of CuO mesoporous nanosheet cluster array electrodes with super lithium-storage properties. J Mater Chem 22(27):13637–13642CrossRefGoogle Scholar
  26. 26.
    Yuan W, Qiu Z, Chen Y, Zhao B, Liu M, Tang Y (2018) A binder-free composite anode composed of CuO nanosheets and multi-wall carbon nanotubes for high-performance lithium-ion batteries. Electrochim Acta 267:150–160CrossRefGoogle Scholar
  27. 27.
    Tang C, Zhang H, Jiao D, Hu R, Liu Z (2019) Hierarchical C-doped CuO nanorods on carbon cloth as flexible binder-free anode for lithium storage. Mater Design 162:52–59CrossRefGoogle Scholar
  28. 28.
    Zhang Q, Zhou K, Lei J, Hu W (2019) Nitrogen dual-doped porous carbon fiber: a binder-free and high-performance flexible anode for lithium ion batteries. Appl Surf Sci 467:992–999CrossRefGoogle Scholar
  29. 29.
    Chen W, Zhang H, Ma Z, Li S, Li Z (2018) Binder free cu(OH)2/CuO electrodes fabricated directly on copper foils by facile large-scale production method. J Alloy Compd 762:565–573CrossRefGoogle Scholar
  30. 30.
    Ji D, Zhou H, Tong Y, Wang J, Zhu M, Chen T, Yuan A (2017) Facile fabrication of MOF-derived octahedral CuO wrapped 3D graphene network as binder-free anode for high performance lithium-ion batteries. Chem Eng J 313:1623–1632CrossRefGoogle Scholar
  31. 31.
    Lee S, Song H, Hwang JY, Kim SM, Jeong Y (2018) A novel free-standing anode of CuO nanorods in carbon nanotube webs for flexible lithium ion batteries. Carbon Lett 27:98–107CrossRefGoogle Scholar
  32. 32.
    Liu Y, Ying Y, Mao Y, Gu L, Wang Y, Peng X (2013) CuO nanosheets/rGO hybrid lamellar films with enhanced capacitance. Nanoscale 5(19):9134–9140CrossRefGoogle Scholar
  33. 33.
    Zoolfakar AS, Rani RA, Morfa AJ, Mullaned AP, Kalantar-zadeh K (2014) Nanostructured copper oxide semiconductors: a perspective on materials synthesis methods and applications. J Mater Chem C 2(27):5247–5270CrossRefGoogle Scholar
  34. 34.
    Zoolfakar AS, Ahmad MZ, Rani RA, Ou JZ, Balendhran S, Zhuiykov S, Latham K, Wlodarski W, Kalantar-zadeh K (2013) Nanostructured copper oxides as ethanol vapour sensors. Sensor Actuat B-Chem 185:620–627CrossRefGoogle Scholar
  35. 35.
    Li J, Li X, Wang H, Zhao Y, Sun Y, Sun X, Zhen Z, Li Q, Yang F (2018) Structural optical and electrical properties of polycrystalline CuO thin films prepared by magnetron sputtering. J Electron Mater 47(10):5788–5792CrossRefGoogle Scholar
  36. 36.
    Wei S, Chen Y, Ma Y, Shao Z (2010) Fabrication of CuO/ZnO composite films with cathodic co-electrodeposition and their photocatalytic performance. J Mol Catal A-Chem 331(1-2):112–116CrossRefGoogle Scholar
  37. 37.
    Wang C, Sawicki M, Emani S, Caihong L, Shaw LL (2015) Na3MnCO3PO4–a high capacity multi-electron transfer redox cathode material for sodium ion batteries. Electrochim Acta 161:322–328CrossRefGoogle Scholar
  38. 38.
    Wang C, Sawicki M, Kaduk JA, Shaw LL (2015) Roles of processing, structural defects and ionic conductivity in the electrochemical performance of Na3MnCO3PO4 cathode material. J Electrochem Soc 162(8):A1601–A1609CrossRefGoogle Scholar
  39. 39.
    Yuan T, Ruan J, Zhang W, Tan Z, Yang J, Ma ZF, Zheng S (2016) Flexible overoxidized polypyrrole films with orderly structure as high-performance anodes for Li-ion and Na-ion batteries. Acs Appl Mater Inter 8(51):35114–35122CrossRefGoogle Scholar
  40. 40.
    Sun X, Zhang H, Zhou L, Huang X, Yu C (2016) Polypyrrole-coated zinc ferrite hollow spheres with improved cycling stability for lithium-ion batteries. Small 12(27):3732–3737CrossRefGoogle Scholar
  41. 41.
    Wu L, Zheng J, Wang L, Xiong X, Shao Y, Wang G, Wang JH, Zhong S, Wu M (2019) PPy-encapsulated SnS2 nanosheets stabilized by defects on TiO2 support as durable anode material for lithium ion battery. Angew Chem Int Edit 58(3):811–815CrossRefGoogle Scholar
  42. 42.
    Yin Z, Fan W, Ding Y, Li J, Guan L, Zheng Q (2015) Shell structure control of PPy-modified CuO composite nanoleaves for lithium batteries with improved cyclic performance. ACS Sustain Chem Eng 3(3):507–517CrossRefGoogle Scholar
  43. 43.
    Beebee C, Watkins EB, Sapstead RM, Ferreira VC, Ryder KS, Smith EL, Hillman AR (2019) Effect of electrochemical control function on the internal structure and composition of electrodeposited polypyrrole films: a neutron reflectometry study. Electrochim Acta 295:978–988CrossRefGoogle Scholar
  44. 44.
    Ma F, Zhang D, Zhang N, Zhang T, Wang Y (2018) Polydopamine-assisted deposition of polypyrrole on electrospun poly (vinylidene fluoride) nanofibers for bidirectional removal of cation and anion dyes. Chem Eng J 354:432–444CrossRefGoogle Scholar
  45. 45.
    Wang H, Leaukosol N, He Z, Fei G, Si C, Ni Y (2013) Microstructure distribution and properties of conductive polypyrrole/cellulose fiber composites. Cellulose 20(4):1587–1601CrossRefGoogle Scholar
  46. 46.
    Cho G, Fung BM, Glatzhofer DT, Lee JS, Shul YG (2001) Preparation and characterization of polypyrrole-coated nanosized novel ceramics. Langmuir 17(2):456–461CrossRefGoogle Scholar
  47. 47.
    Zhang J, Wang S, Xu M, Wang Y, Xia H, Zhang S, Guo X, Wu S (2009) Polypyrrole-coated SnO2 hollow spheres and their application for ammonia sensor. J Phys Chem C 113:1662–1665CrossRefGoogle Scholar
  48. 48.
    Tong L, Gao M, Jiang C, Cai K (2019) Ultra-high performance and flexible polypyrrole coated CNT paper electrode for all-solid-state supercapacitors. J Mater Chem A 7(17):10751–10760.  https://doi.org/10.1039/c9ta01856e CrossRefGoogle Scholar
  49. 49.
    Feng L, Wang R, Zhang Y, Ji S, Chuan Y, Zhang W, Liu B, Yuan C, Du C (2019) In situ XRD observation of CuO anode phase conversion in lithium-ion batteries. J Mater Sci 54(2):1520–1528CrossRefGoogle Scholar
  50. 50.
    Luo P, Cui Z, Jia Z, Sun J, Tan Y, Guo X (2017) Monodispersed carbon-coated cubic NiP2 nanoparticles anchored on carbon nanotubes as ultra-long-life anodes for reversible lithium storage. ACS Nano 11:3705–3715CrossRefGoogle Scholar
  51. 51.
    Chen C, Wen Y, Hu X, Ji X, Yan M, Mai L, Hu P, Shan B, Huang Y (2017) Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat Commun 6:6929CrossRefGoogle Scholar
  52. 52.
    Li JM, Kurra N, Seredych M, Meng X, Wang HZ, Gogotsi Y (2019) Bipolar carbide-carbon high voltage aqueous lithium-ion capacitors. Nano Energy 56:151–159CrossRefGoogle Scholar
  53. 53.
    Song Z, Qian Y, Gordin ML, Tang D, Xu T, Otani M, Zhan H, Zhou H, Wang D (2015) Polyanthraquinone as a reliable organic electrode for stable and fast lithium storage. Angew Chem Int Ed 54(47):13947–13951CrossRefGoogle Scholar
  54. 54.
    Novák P, Müller K, Santhanam KSV, Haas O (1997) Electrochemically active polymers for rechargeable batteries. Chem Rev 97(1):207–281CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yulin Zhou
    • 1
  • Xiujuan Jin
    • 1
    Email author
  • Jing Ni
    • 1
  • Shaofeng Zhang
    • 1
  • Jiao Yang
    • 1
  • Pengfei Liu
    • 1
  • Zhaowu Wang
    • 1
    • 2
  • Jianfei Lei
    • 1
    • 3
    Email author
  1. 1.School of Physics and EngineeringHenan University of Science and TechnologyLuoyangChina
  2. 2.National Laboratory of Solid State MicrostructuresNanjing UniversityNanjingChina
  3. 3.Henan Key Laboratory of Photoelectric Energy Stroage Materials and ApplicationsHenan University of Science and TechnologyLuoyangChina

Personalised recommendations