A nickel oxide nanoflakes/reduced graphene oxide composite and its high-performance lithium-storage properties

  • Hong Zhu
  • Xiangbing Zeng
  • Tianli HanEmail author
  • Xuexue Li
  • Shuguang Zhu
  • Bai Sun
  • Ping Zhou
  • Jinyun LiuEmail author
Original Paper


Since conventional graphite-based anode possesses a low capacity, seeking for high-capacity anode candidates becomes significant for constructing emerging Li-ion batteries. Herein, we present a composite anode prepared using a hydrothermal method, which consists of dense NiO nanoflakes in situ growing on reduced graphene oxide (rGO) sheets. The rGO sheets within the NiO/rGO composite provide a conductive frame that enables rapid charge transfer, while the in situ anchoring of NiO nanoflakes on rGO reduces the agglomeration. We found that the appropriate loading of NiO in the composite is also significant. The NiO/rGO composite anode exhibits a high capacity of 1068 mAh g−1 after 100 cycles at 0.1 A g−1. In addition, the capacity remains 870 mAh g−1 when the current density is increased to a high rate of 2 A g−1, indicating a good rate performance for potential applications.


Li-ion battery Anode Composite Electrochemical energy storage 


Funding information

This work was supported by the Science and Technology Major Project of Anhui Province (18030901093 and 16030801118), the Major Project of the Anhui Provincial Department of Education (KJ2018ZD034, KJ2016SD14, and KJ2017ZD40), Foundation of Anhui Laboratory of Molecule-Based Materials (FZJ19014), Anhui Provincial Program for Innovation and Entrepreneurship of Returnees From Overseas (2019LCX005), the National Natural Science Foundation of China (51672176, 661573334 and 61873003), and the Creative Science Foundation of AHNU (2018XJJ108).


  1. 1.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367CrossRefGoogle Scholar
  2. 2.
    Lin DC, Liu YY, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnol 12(3):194–206CrossRefGoogle Scholar
  3. 3.
    Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176CrossRefGoogle Scholar
  4. 4.
    Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41(2):666–686CrossRefGoogle Scholar
  5. 5.
    Xiao KK, Zhang LL, Tang QL, Fan BB, Hu AP, Zhang SY, Deng WN, Chen XH (2018) Facile synthesis of single-crystalline Co3O4 cubes as high-performance anode for lithium-ion batteries. J Solid State Electrochem 22(8):2321–2328CrossRefGoogle Scholar
  6. 6.
    Jean JH, Kwak H, Kim WS, Kim HC, Park KY, Kim H, Yang HS, Yu WR, Kang K, Hong SH (2017) TiO2@SnO2@TiO2 triple-shell nanotube anode for high-performance lithium-ion batteries. J Solid State Electrochem 21(8):2365–2371CrossRefGoogle Scholar
  7. 7.
    Zhu X, Zhu Y, Murali S, Stollers MD, Ruoff RS (2011) Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5(4):3333–3338CrossRefGoogle Scholar
  8. 8.
    Pan QM, Liu J (2009) Facile fabrication of porous NiO films for lithium-ion batteries with high reversibility and rate capability. J Solid State Electrochem 13(10):1591–1597CrossRefGoogle Scholar
  9. 9.
    Zou F, Chen YM, Liu K, Yu Z, Liang W, Bhaway SM, Gao M, Zhu Y (2016) Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage. ACS Nano 10(1):377–386CrossRefGoogle Scholar
  10. 10.
    Wang YJ, Zhen MM, Liu HL, Wang C (2018) Interlayer-expanded MoS2/graphene composites as anode materials for high-performance lithium-ion batteries. J Solid State Electrochem 22(10):3069–3076CrossRefGoogle Scholar
  11. 11.
    Zhou G, Wang DW, Yin LC, Li N, Li F, Cheng HM (2012) Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 6(4):3214–3223CrossRefGoogle Scholar
  12. 12.
    Wang H, Zhuo S, Liang Y, Han X, Zhang B (2016) General self-template synthesis of transition-metal oxide and chalcogenide mesoporous nanotubes with enhanced electrochemical performances. Angew Chem Int Ed 55(31):9055–9059CrossRefGoogle Scholar
  13. 13.
    Shi WP, Zhang YM, Key JL, Shen PK (2018) Three-dimensional graphene sheets with NiO nanobelt outgrowths for enhanced capacity and long-term high rate cycling Li-ion battery anode material. J Power Sources 379:362–370CrossRefGoogle Scholar
  14. 14.
    Kiran GK, Munichandraiah N, Kamath PV (2018) Effect of non-stoichiometry on the charge storage capacity of NiO conversion anodes in Li-ion batteries. J Solid State Electrochem 22(12):3833–3843CrossRefGoogle Scholar
  15. 15.
    Feng Y, Zhang H, Li W, Fang L, Wang Y (2016) Targeted synthesis of novel hierarchical sandwiched NiO/C arrays as high-efficiency lithium ion batteries anode. J Power Sources 301:78–86CrossRefGoogle Scholar
  16. 16.
    Agubra VA, Zuniga L, Flores D, Campos H, Villarreal J, Alcoutlabi M (2017) A comparative study on the performance of binary SnO2/NiO/C and Sn/C composite nanofibers as alternative anode materials for lithium ion batteries. Electrochim Acta 224:608–621CrossRefGoogle Scholar
  17. 17.
    Ruan X, Yang Y, Pu K, Gao M, Liu Y, Pan H (2018) Superior long-term cyclability of a nanocrystalline NiO anode enabled by a mechanochemical reaction-induced amorphous protective layer for Li-ion batteries. J Power Sources 397:134–142CrossRefGoogle Scholar
  18. 18.
    Zhou Z, Chen F, Kuang T, Chang L, Yang J, Fan P, Zhao Z, Zhong M (2018) Lignin-derived hierarchical mesoporous carbon and NiO hybrid nanospheres with exceptional Li-ion battery and pseudocapacitive properties. Electrochim Acta 274:288–297CrossRefGoogle Scholar
  19. 19.
    Liu W, Lu C, Wang X, Liang K, Tay BK (2015) In situ fabrication of three-dimensional, ultrathin graphite/carbon nanotube/NiO composite as binder-free electrode for high-performance energy storage. J Mater Chem A 3(2):624–633CrossRefGoogle Scholar
  20. 20.
    Xu YQ, Hou SJ, Yang G, Lu T, Pan LK (2018) NiO/CNTs derived from metal-organic frameworks as superior anode material for lithium-ion batteries. J Solid State Electrochem 22(3):785–795CrossRefGoogle Scholar
  21. 21.
    Zhang CC, Shao D, Gao QZ, Lu YH, Liu ZT, Yu XY, Fang YP, Chen DY (2015) Electrochemical lithium storage of Li4Ti5O12/NiO nanocomposites for high-performance lithium-ion battery anodes. J Solid State Electrochem 19(6):1859–1866CrossRefGoogle Scholar
  22. 22.
    Qiu DF, Xu ZJ, Zheng MB, Zhao B, Pan LJ, Pu L, Shi Y (2012) Graphene anchored with mesoporous NiO nanoplates as anode material for lithium-ion batteries. J Solid State Electrochem 16(5):1889–1892CrossRefGoogle Scholar
  23. 23.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRefGoogle Scholar
  24. 24.
    Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332(6037):1537–1541CrossRefGoogle Scholar
  25. 25.
    Tan C, Cao X, Wu XJ, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam GH, Sindoro M, Zhang H (2017) Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 117(9):6225–6331CrossRefGoogle Scholar
  26. 26.
    Qiu DF, Bu G, Zhao B, Lin ZX (2015) In situ growth of NiO nanoparticles on graphene as a high-performance anode material for lithium-ion battery anodes with enhanced strain accommodation. RCS Adv 5:4385–4388Google Scholar
  27. 27.
    Li MY, Dong BT, Gao GX, Ding SJ (2015) Synthesis of nickel oxide/reduced graphene oxide composite with nanosheet-on-sheet nanostructure for lithium-ion batteries. Mater Lett 155:30–33CrossRefGoogle Scholar
  28. 28.
    Kottegoda IRM, Idris NH, Lu L, Wang JZ, Liu HK (2011) Synthesis and characterization of graphene–nickel oxide nanostructures for fast charge-discharge application. Electrochim Acta 56(16):5815–5822CrossRefGoogle Scholar
  29. 29.
    Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V (2015) Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217):1246501CrossRefGoogle Scholar
  30. 30.
    Wang X, Zhang L, Zhang Z, Aishui Y, Wu PY (2016) Growth of 3D hierarchical porous NiO@carbon nanoflakes on graphene sheets for high-performance lithium-ion batteries. Phys Chem Chem Phys 18(5):3893–3899CrossRefGoogle Scholar
  31. 31.
    Hall DS, Lockwood DJ, Poirier S, Bock C, MacDougall BR (2012) Raman and infrared spectroscopy of α and β phases of thin nickel hydroxide films electrochemically formed on nickel. J Phys Chem A 116(25):6771–6784CrossRefGoogle Scholar
  32. 32.
    Liu Y, Wang R, Yan X (2015) Synergistic effect between ultra-small nickel hydroxide nanoparticles and reduced graphene oxide sheets for the application in high-performance asymmetric supercapacitor. Sci Rep 5(1):11095CrossRefGoogle Scholar
  33. 33.
    Shieh SR, Duffy TS (2002) Raman spectroscopy of Co(OH)2 at high pressures: implications for amorphization and hydrogen repulsion. Phys Rev B 66(13):134301CrossRefGoogle Scholar
  34. 34.
    Yin X, Chen H, Zhi C, Sun W, Lv LP, Wang Y (2018) Functionalized graphene quantum dot modification of yolk-shell NiO microspheres for superior lithium storage. Small 14:e1800589CrossRefGoogle Scholar
  35. 35.
    Shruthi B, Raju VB, Madhu BJ (2015) Synthesis, spectroscopic and electrochemical performance of pasted β-nickel hydroxide electrode in alkaline electrolyte. Spectrochim Acta A 135:683–689CrossRefGoogle Scholar
  36. 36.
    Wang W, Song XJ, Gu CP, Liu DX, Liu JY, Huang JR (2018) A high-capacity NiCo2O4@reduced graphene oxide nanocomposite Li-ion battery anode. J Alloy Compd 741:223–230CrossRefGoogle Scholar
  37. 37.
    Chen XF, Huang Y, Zhang KC (2018) Cobalt nanofibers coated with layered nickel silicate coaxial core-shell composites as excellent anode materials for lithium ion batteries. J Colloid Interf Sci 513:788–796CrossRefGoogle Scholar
  38. 38.
    Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q, Wei F (2012) Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 22(12):2632–2641CrossRefGoogle Scholar
  39. 39.
    Hu Q, Gu Z, Zheng X, Zhang X (2016) Three-dimensional Co3O4@NiO hierarchical nanowire arrays for solid-state symmetric supercapacitor with enhanced electrochemical performances. Chem Eng J 304:223–231CrossRefGoogle Scholar
  40. 40.
    Du D, Yue W, Fan X, Tang K, Yang X (2016) Ultrathin NiO/NiFe2O4 nanoplates decorated graphene nanosheets with enhanced lithium storage properties. Electrochim Acta 194:17–25CrossRefGoogle Scholar
  41. 41.
    Yan X, Tian L, Chen X (2015) Crystalline/amorphous Ni/NiO core/shell nanosheets as highly active electrocatalysts for hydrogen evolution reaction. J Power Sources 300:336–343CrossRefGoogle Scholar
  42. 42.
    Tien HN, Hur SH (2012) One-step synthesis of a highly conductive graphene-polypyrrole nanofiber composite using a redox reaction and its use in gas sensors. Phys Status Solidi RRL 6(9-10):379–381CrossRefGoogle Scholar
  43. 43.
    Cheng YW, Chen CH, Yang SW, Li YC, Peng BL, Chang CC, Wang RC, Liu CP (2018) Freestanding three-dimensional CuO/NiO core-shell nanowire arrays as high-performance lithium-ion battery anode. Sci Rep 8(1):18034–18034CrossRefGoogle Scholar
  44. 44.
    Cheng CF, Chen YM, Zou F, Yang KC, Lin TY, Liu K, Lai CH, Ho RM, Zhu Y (2018) Nanoporous gyroid Ni/NiO/C nanocomposites from block copolymer templates with high capacity and stability for lithium storage. J Mater Chem A 6(28):13676–13684CrossRefGoogle Scholar
  45. 45.
    Meng X, Zhu J, Bi H, Fu Y, Han Q, Wang X (2015) Three-dimensional nickel hydroxide/graphene composite hydrogels and their transformation to NiO/graphene composites for energy storage. J Mater Chem A 3(43):21682–21689CrossRefGoogle Scholar
  46. 46.
    Chen X, Xiao T, Wang S, Li J, Xiang P, Jiang L, Tan X (2019) Superior Li-ion storage performance of graphene decorated NiO nanowalls on Ni as anode for lithium ion batteries. Mater Chem Phys 222:31–36CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Battery System Research, Chery New-Energy Vehicle Technology CorporationWuhuPeople’s Republic of China
  2. 2.Key Laboratory of Functional Molecular Solids of the Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials ScienceAnhui Normal UniversityWuhuPeople’s Republic of China
  3. 3.College of Environment and Energy EngineeringAnhui Jianzhu UniversityHefeiPeople’s Republic of China
  4. 4.Institute of Intelligent MachinesChinese Academy of SciencesHefeiPeople’s Republic of China

Personalised recommendations