Quantum conductance investigation on carbon nanotube–based antibiotic sensor

  • Milad Moutab SahihazarEmail author
  • Mohammad Taghi Ahmadi
  • Mina Nouri
  • Meisam Rahmani
Original Paper


Nanostructured carbon material (NSCM) based chemiresistive sensors are popular for sensing different analytes because of their high sensitivity, low cost, and simple construction compared with the conventional sensors. In this paper, the carbon strand (bulk) containing carbon nanostructured materials is fabricated through high-density polyethylene (HDPE). HDPE has been used as a carbon source and carbon strand is grown by pulsed arc discharge method between two hollow metallic rods in the presence of the HDPE. Later on, these electrodes have been used as contacts in the proposed structure. The analyzed structure as a quasi-metallic multi-walled carbon nanotube (MWCNT) based chemiresistive sensor is considered for electrochemical sensing of amoxicillin, penicillin-G, and ampicillin antibiotics. Therefore, the MWCNT quantum conductance as a modeling platform is employed. Finally, current-voltage (I-V) characteristics of samples are investigated in the presence of antibiotic materials for different conditions. To this end, the proposed model is compared with experimental data and favorable agreement is reported.


Quantum conductance Transmission probability I-V characteristic Quasi-metallic MWCNT Chemiresistive sensors Antibiotic 



The authors thank Miss Elnaz Khoramak and Mr. Reza Alizadeh at the Urmia University for their technical support.


  1. 1.
    Balarak D, Mostafapour F, Bazrafshan E, Saleh TA (2017) Studies on the adsorption of amoxicillin on multi-wall carbon nanotubes. Water Sci Technol 75:1599–1606CrossRefGoogle Scholar
  2. 2.
    Kumar AS, Sornambikai S, Deepika L, Zen J-M (2010) Highly selective immobilization of amoxicillin antibiotic on carbon nanotube modified electrodes and its antibacterial activity. J Mater Chem 20:10152–10158CrossRefGoogle Scholar
  3. 3.
    Zervosen A, Sauvage E, Frère J-M, Charlier P, Luxen A (2012) Development of new drugs for an old target—the penicillin binding proteins. Molecules 17:12478–12505CrossRefGoogle Scholar
  4. 4.
    Mehrani MJ, Tashayoei MR, Ferdowsi A, Hashemi H (2016) Qualitative evaluation of antibiotics in WWTP and review of some antibiotics removal methods. Int Acad J Sci Eng 3:11–22Google Scholar
  5. 5.
    Ji L, Chen W, Bi J, Zheng S, Xu Z, Zhu D, Alvarez PJ (2010) Adsorption of tetracycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry. Environ Toxicol Chem 29:2713–2719CrossRefGoogle Scholar
  6. 6.
    Mohammadi A, Kazemipour M, Ranjbar H, Walker RB, Ansari M (2015) Amoxicillin removal from aqueous media using multi-walled carbon nanotubes. Fullerenes, Nanotubes, Carbon Nanostruct 23:165–169CrossRefGoogle Scholar
  7. 7.
    Diekema DJ, Pfaller MA (2013) Rapid detection of antibiotic-resistant organism carriage for infection prevention. Clin Infect Dis 56:1614–1620CrossRefGoogle Scholar
  8. 8.
    Zhou L, Li D-J, Gai L, Wang J-P, Li Y-B (2012) Electrochemical aptasensor for the detection of tetracycline with multi-walled carbon nanotubes amplification. Sensors Actuators B Chem 162:201–208CrossRefGoogle Scholar
  9. 9.
    Yola ML, Eren T, Atar N (2014) Molecularly imprinted electrochemical biosensor based on Fe@ Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma. Biosens Bioelectron 60:277–285CrossRefGoogle Scholar
  10. 10.
    Moraes FC, Silva TA, Cesarino I, Lanza MR, Machado SA (2013) Antibiotic detection in urine using electrochemical sensors based on vertically aligned carbon nanotubes. Electroanalysis 25:2092–2099CrossRefGoogle Scholar
  11. 11.
    Chen B, Ma M, Su X (2010) An amperometric penicillin biosensor with enhanced sensitivity based on co-immobilization of carbon nanotubes, hematein, and β-lactamase on glassy carbon electrode. Anal Chim Acta 674:89–95CrossRefGoogle Scholar
  12. 12.
    Lan L, Yao Y, Ping J, Ying Y (2017) Recent advances in nanomaterial-based biosensors for antibiotics detection. Biosens Bioelectron 91:504–514CrossRefGoogle Scholar
  13. 13.
    Perez-Lopez B, Merkoci A (2012) Carbon nanotubes and graphene in analytical sciences. Microchim Acta 179:1–16CrossRefGoogle Scholar
  14. 14.
    Cesarino I, Moraes FC, Machado SA (2011) A biosensor based on polyaniline-carbon nanotube core-shell for electrochemical detection of pesticides. Electroanalysis 23:2586–2593CrossRefGoogle Scholar
  15. 15.
    Kim SN, Rusling JF, Papadimitrakopoulos F (2007) Carbon nanotubes for electronic and electrochemical detection of biomolecules. Adv Mater 19:3214–3228CrossRefGoogle Scholar
  16. 16.
    Ramnani P, Saucedo NM, Mulchandani A (2016) Carbon nanomaterial-based electrochemical biosensors for label-free sensing of environmental pollutants. Chemosphere 143:85–98CrossRefGoogle Scholar
  17. 17.
    Leyden MR, Schuman C, Sharf T, Kevek J, Remcho VT, Minot ED (2010) Fabrication and characterization of carbon nanotube field-effect transistor biosensors. In: Shinar R, Kymissis I (eds) Organic semiconductors in sensors and bioelectronics III, vol 7779. San Diego, Calif, USAGoogle Scholar
  18. 18.
    Allen BL, Kichambare PD, Star A (2007) Carbon nanotube field-effect-transistor-based biosensors. Adv Mater 19:1439–1451CrossRefGoogle Scholar
  19. 19.
    Absalan G, Akhond M, Ershadifar H (2015) Highly sensitive determination and selective immobilization of amoxicillin using carbon ionic liquid electrode. J Solid State Electrochem 19:2491–2499CrossRefGoogle Scholar
  20. 20.
    Ferraz BR, Leite FR, Malagutti AR (2016) Highly sensitive electrocatalytic determination of pyrazinamide using a modified poly (glycine) glassy carbon electrode by square-wave voltammetry. J Solid State Electrochem 20:2509–2516CrossRefGoogle Scholar
  21. 21.
    Shahrokhian S, Hosseini-Nassab N, Kamalzadeh Z (2014) Fabrication of an electrochemical sensor based on the electrodeposition of Pt nanoparticles on multiwalled carbon nanotubes film for voltammetric determination of ceftriaxone in the presence of lidocaine, assisted by factorial-based response-surface methodology. J Solid State Electrochem 18:77–88CrossRefGoogle Scholar
  22. 22.
    Majdi S, Jabbari A, Heli H, Yadegari H, Moosavi-Movahedi A, Haghgoo S (2009) Electrochemical oxidation and determination of ceftriaxone on a glassy carbon and carbon-nanotube-modified glassy carbon electrodes. J Solid State Electrochem 13:407–416CrossRefGoogle Scholar
  23. 23.
    Hasanpour F, Ensafi AA, Khayamian T (2010) Simultaneous chemiluminescence determination of amoxicillin and clavulanic acid using least squares support vector regression. Anal Chim Acta 670:44–50CrossRefGoogle Scholar
  24. 24.
    Tang R, Shi Y, Hou Z, Wei L (2017) Carbon nanotube-based chemiresistive sensors. Sensors 17:882CrossRefGoogle Scholar
  25. 25.
    Sahihazar MM, Nouri M, Rahmani M, Ahmadi MT, Kasani H (2018) Fabrication of carbon nanoparticle strand under pulsed arc discharge. Plasmonics 13:2377–2386CrossRefGoogle Scholar
  26. 26.
    Nouri M, Meshginqalam B, Sahihazar MM, Dizaji RSP, Ahmadi MT, Ismail R (2018) Experimental and theoretical investigation of sensing parameters in carbon nanotube-based DNA sensor. IET Nanobiotechnol 12:1125–1129CrossRefGoogle Scholar
  27. 27.
    Kasani H, Khodabakhsh R, Ahmadi MT, Ochbelagh DR, Ismail R (2017) Electrical properties of MWCNT/HDPE composite-based MSM structure under neutron irradiation. J Electron Mater 46:2548–2555CrossRefGoogle Scholar
  28. 28.
    Kasani H, Taghi Ahmadi M, Khoda-Bakhsh R, RezaeiOchbelagh D, Ismail R (2016) Influences of Sr-90 beta-ray irradiation on electrical characteristics of carbon nanoparticles. J Appl Phys 119:124510CrossRefGoogle Scholar
  29. 29.
    Helbling T, Hierold C, Durrer L, Roman C, Pohle R, Fleischer M (2008) Suspended and non-suspended carbon nanotube transistors for NO2 sensing–a qualitative comparison. Phys Status Solidi B 245:2326–2330CrossRefGoogle Scholar
  30. 30.
    Abadi HKF, Ahmadi M, Yusof R, Saeidmanesh M, Rahmani M, Kiani MJ, Ghadiry M (2014) Development of carbon nanotube based biosensors model for detection of single-nucleotide polymorphism. Sci Adv Mater 6:513–519CrossRefGoogle Scholar
  31. 31.
    Nshimiyimana JP, Zhang J, Hu X, Chi X, Wu P, Liu S, Zhang Z, Chu W, Sun L (2017) Controlling conducting channels of single-walled carbon nanotube array with atomic force microscopy. Appl Nanosci 7:759–764CrossRefGoogle Scholar
  32. 32.
    Wang F, Swager TM (2011) Diverse chemiresistors based upon covalently modified multiwalled carbon nanotubes. J Am Chem Soc 133:11181–11193CrossRefGoogle Scholar
  33. 33.
    Wong H-SP, Akinwande D (2011) Carbon nanotube and graphene device physics. Cambridge University Press, CambridgeGoogle Scholar
  34. 34.
    Imam S-A, Kalam N, Abdhullah S (2014) Temperature dependence of carbon nanotube field effect transistor under non-ballistic conduction considering different dielectric materials. Nanosci Nanotechnol 4:52–58Google Scholar
  35. 35.
    Biercuk MJ, Ilani S, Marcus CM, McEuen PL (2007) Electrical transport in single-wall carbon nanotubes. In: Carbon nanotubes, vol 111. Springer, pp 455-493Google Scholar
  36. 36.
    Naeemi A, Meindl JD (2006) Compact physical models for multiwall carbon-nanotube interconnects. IEEE Electron Device Lett 27:338–340CrossRefGoogle Scholar
  37. 37.
    Naeemi A, Meindl JD (2008) Performance modeling for single-and multiwall carbon nanotubes as signal and power interconnects in gigascale systems. IEEE Trans Electron Devices 55:2574–2582CrossRefGoogle Scholar
  38. 38.
    Naeemi A, Meindl JD (2007) Physical modeling of temperature coefficient of resistance for single-and multi-wall carbon nanotube interconnects. IEEE Electron Device Lett 28:135–138CrossRefGoogle Scholar
  39. 39.
    Naeemi A, Meindl JD (2005) Impact of electron-phonon scattering on the performance of carbon nanotube interconnects for GSI. IEEE Electron Device Lett 26:476–478CrossRefGoogle Scholar
  40. 40.
    Urbina A, Echeverria I, Pérez-Garrido A, Díaz-Sánchez A, Abellán J (2003) Quantum conductance steps in solutions of multiwalled carbon nanotubes. Phys Rev Lett 90:106603CrossRefGoogle Scholar
  41. 41.
    Datta S (1997) Electronic transport in mesoscopic systems. Cambridge University Press, CambridgeGoogle Scholar
  42. 42.
    Bushmaker AW, Oklejas V, Walker D, Hopkins AR, Chen J, Cronin SB (2016) Single-ion adsorption and switching in carbon nanotubes. Nat Commun 7:10475CrossRefGoogle Scholar
  43. 43.
    Jarillo-Herrero PD (2005) Quantum transport in carbon nanotubes. Ph.D. thesis, TU Delft, DelftGoogle Scholar
  44. 44.
    Grujicic M, Cao G, Singh R (2003) The effect of topological defects and oxygen adsorption on the electronic transport properties of single-walled carbon-nanotubes. Appl Surf Sci 211:166–183CrossRefGoogle Scholar
  45. 45.
    Takane Y, Wakabayashi K (2003) Random-matrix approach to quantum electron transport in metallic carbon nanotubes. J Phys Soc Jpn 72:2710–2713CrossRefGoogle Scholar
  46. 46.
    Das MP (2010) Mesoscopic systems in the quantum realm: fundamental science and applications. Adv Nat Sci Nanosci Nanotechnol 1:043001CrossRefGoogle Scholar
  47. 47.
    Close GF, Wong H-SP (2008) Assembly and electrical characterization of multiwall carbon nanotube interconnects. IEEE Trans Nanotechnol 7:596–600CrossRefGoogle Scholar
  48. 48.
    Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes—the route toward applications. science 297:787–792CrossRefGoogle Scholar
  49. 49.
    Li HJ, Lu W, Li J, Bai X, Gu C (2005) Multichannel ballistic transport in multiwall carbon nanotubes. Phys Rev Lett 95:086601CrossRefGoogle Scholar
  50. 50.
    Chimowa G, Linganiso EC, Churochkin D, Coville NJ, Bhattacharyya S (2011) Origin of conductivity crossover in entangled multiwalled carbon nanotube networks filled by iron. Phys Rev B 84:205429CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Milad Moutab Sahihazar
    • 1
    Email author
  • Mohammad Taghi Ahmadi
    • 1
  • Mina Nouri
    • 1
  • Meisam Rahmani
    • 2
  1. 1.Department of NanotechnologyUrmia UniversityUrmiaIran
  2. 2.Department of Electrical EngineeringAmirkabir University of TechnologyTehranIran

Personalised recommendations