Advertisement

A promising heat-induced supramolecular metallogel electrolyte for quasi-solid-state dye-sensitized solar cells

  • Wei Zhang
  • Zhiyuan Wang
  • Li TaoEmail author
  • Keyu Duan
  • Hao WangEmail author
  • Jun Zhang
  • Xu Pan
  • Zhipeng HuoEmail author
Original Paper
  • 26 Downloads

Abstract

A series of Fe(III)-based coordination-driven metallogel (MOG) electrolytes are obtained by absorbing liquid electrolytes with MOGs and applied to quasi-solid-state dye-sensitized solar cells (DSSCs). The MOG, prepared by Fe3+ and trimesic acid, presents a porous and flower-like structure, which can ensure the effective diffusion of I/I3 ions and excellent infiltration to the TiO2 photoanode. Moreover, the mechanical property of MOG is stable enough to guarantee the photovoltaic performances of DSSCs in the operating environment. In the MOG electrolyte, trimesic acid acts as the gelator to coordinate with Fe3+ to form MOG. Furthermore, the condition of TiO2 conduction band edge of quasi-solid-state DSSC shifts with the liquid electrolyte concentration increasing in MOG, which results in both Voc and Jsc increasing firstly and then decreasing, and the process of electron kinetics is investigated to illustrate these differences. Finally, an excellent photoelectric conversion efficiency of 5.31% is obtained for MOG electrolyte–based quasi-solid-state DSSC.

Keywords

Quasi-solid-state Dye-sensitized solar cell Metallogel Electron kinetics 

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (No. 51602095) and Anhui Provincial Natural Science Foundation (No. 1708085MB31).

Supplementary material

10008_2019_4258_MOESM1_ESM.docx (403 kb)
ESM 1 (DOCX 402 kb)

References

  1. 1.
    O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740CrossRefGoogle Scholar
  2. 2.
    Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawab J, Hanaya M (2015) Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commun 51(88):15894–15897CrossRefGoogle Scholar
  3. 3.
    Yu Q, Yu C, Guo F, Wang J, Jiao S, Gao S, Li H, Zhao L (2012) A stable and efficient quasi-solid-state dye-sensitized solar cell with a low molecular weight organic gelator. Energy Environ Sci 5(3):6151–6155CrossRefGoogle Scholar
  4. 4.
    Tao L, Huo Z, Ding Y, Li Y, Dai S, Wang L, Zhu J, Pan X, Zhang B, Yao J (2015) High-efficiency and stable quasi-solid-state dye-sensitized solar cell based on low molecular mass organogelator electrolyte. J Mater Chem A 3(5):2344–2352CrossRefGoogle Scholar
  5. 5.
    Burschka J, Dualeh A, Kessler F, Baranoff E, Cevey-Ha N-L, Yi C, Nazeeruddin MK, Grätzel M (2011) Tris (2-(1H-pyrazol-1-yl)pyridine) cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. J Am Chem Soc 133(45):18042–18045CrossRefGoogle Scholar
  6. 6.
    de Freitas JN, Nogueira AF, De Paoli M-A (2009) New insights into dye-sensitized solar cells with polymer electrolytes. J Mater Chem 19(30):5279–5294CrossRefGoogle Scholar
  7. 7.
    Wang P, Zakeeruddin SM, Moser JE, Nazeeruddin MK, Sekiguchi T, Grätzel M (2003) A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat Mater 2(6):402–407CrossRefGoogle Scholar
  8. 8.
    Lee KS, Jun Y, Park JH (2012) Controlled dissolution of polystyrene nanobeads: transition from liquid electrolyte to gel electrolyte. Nano Lett 12(5):2233–2237CrossRefGoogle Scholar
  9. 9.
    Wu J, Lan Z, Lin J, Huang M, Hao S, Sato T, Yin S (2007) A novel thermosetting gel electrolyte for stable quasi-solid-state dye-sensitized solar cells. Adv Mater 19(22):4006–4011CrossRefGoogle Scholar
  10. 10.
    Buerkle LE, Rowan SJ (2012) Supramolecular gels formed from multi-component low molecular weight species. Chem Soc Rev 41(18):6089–6102CrossRefGoogle Scholar
  11. 11.
    Mohmeyer N, Kuang D, Wang P, Schmidt H-W, Zakeeruddin SM, Grätzel M (2006) An efficient organogelator for ionic liquids to prepare stable quasi-solid-state dye-sensitized solar cells. J Mater Chem 16(29):2978–2983CrossRefGoogle Scholar
  12. 12.
    Dong Y-L, Rao H-S, Cao Y, Chen H-Y, Kuang D-B, Su C-Y (2017) In situ gelation of Al(III)-4-tert-butylpyridine based metal-organic gel electrolyte for efficient quasi-solid-state dye-sensitized solar cells. J Power Sources 343:148–155CrossRefGoogle Scholar
  13. 13.
    Fages F (2006) Metal coordination to assist molecular gelation. Angew Chem Int Ed 45(11):1680–1682CrossRefGoogle Scholar
  14. 14.
    Xiang S, Li L, Zhang J, Tan X, Cui H, Shi J, Hu Y, Chen L, Su C-Y, James SL (2012) Porous organic–inorganic hybrid aerogels based on Cr3+/Fe3+ and rigid bridging carboxylates. J Mater Chem 22(5):1862–1867CrossRefGoogle Scholar
  15. 15.
    Hu Y, Fan Y, Huang Z, Song C, Li G (2012) In situ fabrication of metal–organic hybrid gels in a capillary for online enrichment of trace analytes in aqueous samples. Chem Commun 48(33):3966–3968CrossRefGoogle Scholar
  16. 16.
    Fan J, Li L, Rao H-S, Yang Q-L, Zhang J, Chen H-Y, Chen L, Kuang D-B, Su C-Y (2014) A novel metal–organic gel based electrolyte for efficient quasi-solid-state dye-sensitized solar cells. J Mater Chem A 2(37):15406–15413CrossRefGoogle Scholar
  17. 17.
    Ding Y, Mo L, Tao L, Ma Y, Hu L, Jiang L, Li Z, Zhang C, Zhang B, Yao J, Dai S (2014) TiO2 sub-microspheres as a bi-functional scattering layer for high-performance dye-sensitized solar cells. Nano 9(05):1440007CrossRefGoogle Scholar
  18. 18.
    Su M-M, Yang H-K, Ren L-J, Zheng P, Wang W (2015) Solvent-mediated gel formation, hierarchical structures, and rheological properties of organogels. Soft Matter 11(4):741–748CrossRefGoogle Scholar
  19. 19.
    Seo Y-K, Ji WY, Lee U-H, Hwang YK, Jun CH, Chang J-S (2012) Formation of a nanohybrid composite between mesostructured cellular silica foam and microporous copper trimesate. Microporous Mesoporous Mater 155:75–81CrossRefGoogle Scholar
  20. 20.
    Liu K, You H, Jia G, Zheng Y, Song Y, Yang M, Huang Y, Zhang H (2009) Coordination-induced formation of one-dimensional nanostructures of europium benzene-1,3,5-tricarboxylate and its solid-state thermal transformation. Cryst Growth Des 9(8):3519–3524CrossRefGoogle Scholar
  21. 21.
    Liu J-W, Zhang Y, Chen X-W, Wang J-H (2014) Graphene oxide–rare earth metal–organic framework composites for the selective isolation of hemoglobin. ACS Appl Mater Interfaces 6(13):10196–10204CrossRefGoogle Scholar
  22. 22.
    Campello SL, Gentil G, Júnior SA, de Azevedo WM (2015) Laser ablation: a new technique for the preparation of metal-organic frameworks Cu3(BTC)2(H2O)3. Mater Lett 148:200–203CrossRefGoogle Scholar
  23. 23.
    Gerenser L (1990) Photoemission investigation of silver/poly (ethylene terephthalate) interfacial chemistry: the effect of oxygen-plasma treatment. J Vac Sci Technol A 8:3682–3691CrossRefGoogle Scholar
  24. 24.
    Zhu B-J, Yu X-Y, Jia Y, Peng F-M, Sun B, Zhang M-Y, Luo T, Liu J-H, Huang X-J (2012) Iron and 1, 3, 5-benzenetricarboxylic metal–organic coordination polymers prepared by solvothermal method and their application in efficient As(V) removal from aqueous solutions. J Phys Chem C 116(15):8601–8607CrossRefGoogle Scholar
  25. 25.
    Cebula I, Lu H, Zharnikov M, Buck M (2013) Monolayers of trimesic and isophthalic acid on Cu and Ag: the influence of coordination strength on adsorption geometry. Chem Sci 4(12):4455–4464CrossRefGoogle Scholar
  26. 26.
    Aitchison H, Lu H, Hogan SW, Früchtl H, Cebula I, Zharnikov M, Buck M (2016) Self-assembled monolayers of oligophenylenecarboxylic acids on silver formed at the liquid–solid interface. Langmuir 32(37):9397–9409CrossRefGoogle Scholar
  27. 27.
    Grätzel M (2001) Photoelectrochemical cells. nature 414(6861):338–344CrossRefGoogle Scholar
  28. 28.
    Ronca E, Pastore M, Belpassi L, Tarantelli F, De Angelis F (2013) Influence of the dye molecular structure on the TiO2 conduction band in dye-sensitized solar cells: disentangling charge transfer and electrostatic effects. Energy Environ Sci 6(1):183–193CrossRefGoogle Scholar
  29. 29.
    Nazeeruddin MK, Humphry-Baker R, Liska P, Grätzel M (2003) Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. J Phys Chem B 107(34):8981–8987CrossRefGoogle Scholar
  30. 30.
    Boschloo G, Häggman L, Hagfeldt A (2006) Quantification of the effect of 4-tert-butylpyridine addition to I/I3 redox electrolytes in dye-sensitized nanostructured TiO2 solar cells. J Phys Chem B 110(26):13144–13150CrossRefGoogle Scholar
  31. 31.
    Fabregat-Santiago F, Garcia-Belmonte G, Mora-Seró I, Bisquert J (2011) Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Phys Chem Chem Phys 13(20):9083–9118CrossRefGoogle Scholar
  32. 32.
    Tao L, Huo Z, Dai S, Zhu J, Zhang C, Huang Y, Zhang B, Yao J (2014) Stable quasi-solid-state dye-sensitized solar cell using a diamide derivative as low molecular mass organogelator. J Power Sources 262:444–450CrossRefGoogle Scholar
  33. 33.
    Huo Z, Zhang C, Fang X, Cai M, Dai S, Wang K (2010) Low molecular mass organogelator based gel electrolyte gelated by a quaternary ammonium halide salt for quasi-solid-state dye-sensitized solar cells. J Power Sources 195(13):4384–4390CrossRefGoogle Scholar
  34. 34.
    Hara K, Dan-oh Y, Kasada C, Ohga Y, Shinpo A, Suga S, Sayama K, Arakawa H (2004) Effect of additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells. Langmuir 20(10):4205–4210CrossRefGoogle Scholar
  35. 35.
    Kawano R, Matsui H, Matsuyama C, Sato A, Susan MABH, Tanabe N, Watanabe M (2004) High performance dye-sensitized solar cells using ionic liquids as their electrolytes. J Photoch Photobio A 164(1-3):87–92CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Faculty of Physics & Electronic SciencesHubei UniversityWuhanPeople’s Republic of China
  2. 2.Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Applied Technology, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiPeople’s Republic of China
  3. 3.Institute of Plasma Physics, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiPeople’s Republic of China

Personalised recommendations