Advertisement

Design and synthesis of sandwich-like CoNi2S4@C@NiCo-LDH microspheres for supercapacitors

  • Juan Xu
  • Huada Cao
  • Chaoying Ni
  • Yan Wang
  • Jianyu CaoEmail author
  • Zhidong ChenEmail author
Original Paper
  • 39 Downloads

Abstract

Novel sandwich-like hollow nickel cobalt sulfides@carbon@nickel cobalt double hydroxides (CoNi2S4@C@NiCo-LDH) are synthesized using a facile microwave-assisted hydrothermal method and investigated as promising electrode materials for supercapacitors. The in-between highly conductive carbon layer simultaneously serves as uniform cover for CoNi2S4 and large-area support for ultrathin NiCo-LDH, which can restrain the microstructure change during the cyclic charge-discharge process and enhance the transmission rate of electrons and electrolyte ions. The especially nanostructured CoNi2S4@C@NiCo-LDH nanocomposites exhibit outstanding supercapacitive performances including excellent gravimetric specific capacitance (1183 mAh g−1 at 1 A g−1) and high rate capability (85.8% retention rate at 20 A g−1). More importantly, the assembled CoNi2S4@C@NiCo-LDH//graphene asymmetric supercapacitor can deliver a superhigh specific capacitance of 550 mAh g−1 at 1 A g−1, prominent energy density of 111.9 Wh kg−1 and long cycling stability with 93.8% of its initial capacitance after 10,000 cycles at 5 A g−1.

Keywords

Sandwich-like structure Supercapacitors CoNi2S4@C@NiCo-LDH 

Notes

Funding information

We gratefully thank the National Natural Science Foundation of China (Grant No. 21773018 and 21573025) and Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 17KJA150001) for support of this work.

References

  1. 1.
    Dong LB, Xu CJ, Li Y, Huang ZH, Kang FY, Yang QH, Zhao X (2016) Flexible electrodes and supercapacitors for wearable energy storage: a review by category. J Mater Chem A 4(13):4659–4685CrossRefGoogle Scholar
  2. 2.
    Zhang L, Hu X, Wang Z, Sun F, Dorrell DG (2018) A review of supercapacitor modeling, estimation, and applications: a control/management perspective. Renew Sust Energ Rev 81:1868–1878CrossRefGoogle Scholar
  3. 3.
    Xiong P, Zhu J, Wang X (2015) Recent advances on multi-component hybrid nanostructures for electrochemical capacitors. J Power Sources 294:31–50CrossRefGoogle Scholar
  4. 4.
    Yan T, Li R, Zhou L, Ma C, Li Z (2015) Three-dimensional electrode of Ni/co layered double hydroxides@NiCo2S4@graphene@Ni foam for supercapacitors with outstanding electrochemical performance. Electrochim Acta 176:1153–1164CrossRefGoogle Scholar
  5. 5.
    Hou Y, Cheng Y, Hobson T, Liu J (2010) Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett 10(7):2727–2733CrossRefGoogle Scholar
  6. 6.
    Hu X, Jia J, Wang G, Chen J, Zhan H, Wen Z (2018) Reliable and general route to inverse opal structured nanohybrids of carbon-confined transition metal sulfides quantum dots for high-performance sodium storage. Adv Energy Mater 8(25):1801452CrossRefGoogle Scholar
  7. 7.
    Wen P, Fan M, Yang D, Wang Y, Cheng H, Wang J (2016) An asymmetric supercapacitor with ultrahigh energy density based on nickle cobalt sulfide nanocluster anchoring multi-wall carbon nanotubes hybrid. J Power Sources 320:28–36CrossRefGoogle Scholar
  8. 8.
    Bai Y, Wang WQ, Wang RR, Sun J, Gao L (2015) Controllable synthesis of 3D binary nickel-cobalt hydroxide/graphene/nickel foam as a binder-free electrode for high-performance supercapacitors. J Mater Chem A 3(23):12530–12538CrossRefGoogle Scholar
  9. 9.
    Lin J, Zheng Y, Du Q, He M, Deng Z (2013) Synthesis and electrochemical properties of graphene/MnO2/conducting polymer ternary composite for supercapacitors. Nano 8(01):1350004CrossRefGoogle Scholar
  10. 10.
    Dubal DP, Ayyad O, Ruiz V, Gómez-Romero P (2015) Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 44(7):1777–1790CrossRefGoogle Scholar
  11. 11.
    Gao YP, Huang KJ (2017) NiCo2S4 materials for supercapacitor applications. Chem Asian J 12(16):1969–1984CrossRefGoogle Scholar
  12. 12.
    Jagadale A, Zhou X, Blaisdell D, Yang S (2018) Carbon nanofibers (CNFs) supported cobalt-nickel sulfide (CoNi2S4) nanoparticles hybrid anode for high performance lithium ion capacitor. Sci Rep 8(1):1602CrossRefGoogle Scholar
  13. 13.
    Pu J, Cui FL, Chu SB, Wang TT, Sheng EH, Wang ZH (2014) Preparation and electrochemical characterization of hollow hexagonal NiCo2S4 nanoplates as pseudocapacitor materials. ACS Sustain Chem Eng 2(4):809–815CrossRefGoogle Scholar
  14. 14.
    Tang YF, Chen T, Yu SX, Qiao YQ, Mu SC, Zhang SH, Zhao YF, Hou L, Huang WW, Gao FM (2015) A highly electronic conductive cobalt nickel sulphide dendrite/quasi-spherical nanocomposite for a supercapacitor electrode with ultrahigh areal specific capacitance. J Power Sources 295:314–322CrossRefGoogle Scholar
  15. 15.
    Xiong XH, Waller G, Ding D, Chen DC, Rainwater B, Zhao BT, Wang ZX, Liu ML (2015) Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors. Nano Energy 16:71–80CrossRefGoogle Scholar
  16. 16.
    Hu W, Chen R, Xie W, Zou L, Qin N, Bao D (2014) CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. ACS Appl Mater Inter 6(21):19318–19326CrossRefGoogle Scholar
  17. 17.
    Shen J, Wu J, Pei L, Rodrigues MTF, Zhang ZQ, Zhang F, Zhang X, Ajayan PM, Ye M (2016) CoNi2S4-graphene-2D-MoSe2 as an advanced electrode material for supercapacitors. Adv Energy Mater 6(13):1600341CrossRefGoogle Scholar
  18. 18.
    Ai Z, Hu Z, Liu Y, Yao M (2016) Capacitance performance of nanostructured CoNi2S4 with different morphology grown on carbon cloth for supercapacitors. Chem Plus Chem 81:322–328Google Scholar
  19. 19.
    Du W, Wang Z, Zhu Z, Hu S, Zhu X, Shi Y, Pang H, Qian X (2014) Facile synthesis and superior electrochemical performances of CoNi2S4/graphene nanocomposite suitable for supercapacitor electrodes. J Mater Chem A 2(25):9613–9619CrossRefGoogle Scholar
  20. 20.
    Peng SJ, Li LL, Li CC, Tan HT, Cai R, Yu H, Mhaisalkar S, Srinivasan M, Ramakrishna S (2013) In situ growth of NiCo2S4 nanosheets on graphene for high-performance supercapacitors. Chem Commun 49(86):10178–10180CrossRefGoogle Scholar
  21. 21.
    Ai Z, Hu Z, Liu Y, Fan M, Liu P (2016) Novel 3D flower-like CoNi2S4/carbon nanotube composites as high-performance electrode materials for supercapacitors. New J Chem 40(1):340–347CrossRefGoogle Scholar
  22. 22.
    Hou Y, Qiu S, Hu Y, Kundu CK, Gui Z, Hu W (2018) Construction of bimetallic ZIF-derived co-Ni LDHs on the surfaces of GO or CNTs with a recyclable method: toward reduced toxicity of gaseous thermal decomposition products of unsaturated polyester resin. ACS Appl Mater Inter 10(21):18359–18371CrossRefGoogle Scholar
  23. 23.
    Daud M, Kamal MS, Shehzad F, Al-Harthi MA (2016) Graphene/layered double hydroxides nanocomposites: a review of recent progress in synthesis and applications. Carbon 104:241–252CrossRefGoogle Scholar
  24. 24.
    Xu J, Dong YZ, Cao JY, Guo B, Chang WC, Chen ZD (2013) Microwave-incorporated hydrothermal synthesis of urchin-like Ni(OH)2-co(OH)2 hollow microspheres and their supercapacitor applications. Electrochim Acta 114:76–82CrossRefGoogle Scholar
  25. 25.
    Nagaraju G, Raju GSR, Ko YH, Yu JS (2016) Hierarchical Ni-Co layered double hydroxide nanosheets entrapped on conductive textile fibers: a cost-effective and flexible electrode for high-performance pseudocapacitors. Nanoscale 8(2):812–825CrossRefGoogle Scholar
  26. 26.
    Shen LF, Yu L, Wu HB, Yu XY, Zhang XG, Lou XW (2015) Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat Commun 6:7694CrossRefGoogle Scholar
  27. 27.
    Ouyang Y, Ye HT, Xia XF, Jiao XY, Li GM, Mutahir S, Wang L, Mandler D, Lei W, Hao QL (2019) Hierarchical electrodes of NiCo2S4 nanosheets anchored sulfur-doped Co3O4 nanoneedles with advanced performance for battery-supercapacitor hybrid devices. J Mater Chem A 7(7):3228–3237.  https://doi.org/10.1039/C8TA11426A CrossRefGoogle Scholar
  28. 28.
    Ouyang Y, Xia XF, Ye HT, Wang L, Jiao XY, Lei W, Hao QL (2018) Three-dimensional hierarchical structure ZnO@C@NiO on carbon cloth for asymmetric supercapacitor with enhanced cycle stability. ACS Appl Mater Inter 10(4):3549–3561CrossRefGoogle Scholar
  29. 29.
    Ouyang Y, Huang RJ, Xia XF, Ye HT, Jiao XY, Wang L, Lei W, Hao QL (2019) Hierarchical structure electrodes of NiO ultrathin nanosheets anchored to NiCo2O4 on carbon cloth with excellent cycle stability for asymmetric supercapacitors. Chem Eng J 355:416–427CrossRefGoogle Scholar
  30. 30.
    Liu X, Shi S, Xiong Q, Li L, Zhang Y, Tang H, Gu C, Wang X, Tu J (2013) Hierarchical NiCo2O4@NiCo2O4 core/shell nanoflake arrays as high-performance supercapacitor materials. ACS Appl Mater Interfaces 5(17):8790–8795CrossRefGoogle Scholar
  31. 31.
    Wan L, Xiao J, Xiao F, Wang S (2014) Nanostructured (Co, Ni)-based compounds coated on a highly conductive three dimensional hollow carbon nanorod array (HCNA) scaffold for high performance pseudocapacitors. ACS Appl Mater Interfaces 6(10):7735–7742CrossRefGoogle Scholar
  32. 32.
    Peng HH, Chen J, Jiang DY, Guo XL, Chen H, Zhang YX (2016) Merging of memory effect and anion intercalation: MnOx-decorated MgAl-LDO as a high-performance nano-adsorbent for the removal of methyl orange. Dalton Trans 45(26):10530–10538CrossRefGoogle Scholar
  33. 33.
    Tang JH, Shen JF, Li N, Ye MX (2015) One-pot tertbutanol assisted solvothermal synthesis of CoNi2S4/reduced graphene oxide nanocomposite for high-performance supercapacitors. Ceram Int 41(5):6203–6211CrossRefGoogle Scholar
  34. 34.
    Li M, Cheng JP, Liu F, Zhang XB (2015) In situ growth of nickel-cobalt oxyhydroxide/oxide on carbon nanotubes for high performance supercapacitors. Electrochim Acta 178:439–446CrossRefGoogle Scholar
  35. 35.
    Lv YY, Zhang F, Dou YQ, Zhai YP, Wang JX, Liu HJ, Xia YY, Tu B, Zhao DY (2012) A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application. J Mater Chem A 22(1):93–99CrossRefGoogle Scholar
  36. 36.
    Chen W, Xia C, Alshareef HN (2014) One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors. ACS Nano 8(9):9531–9541CrossRefGoogle Scholar
  37. 37.
    Jing MJ, Yang YY, Zhu YR, Hou HS, Wu ZB, Ji XB (2014) An asymmetric ultracapacitors utilizing α-Co(OH)2/Co3O4 flakes assisted by electrochemically alternating voltage. Electrochim Acta 141:234–240CrossRefGoogle Scholar
  38. 38.
    Gao Y, Mi LW, Wei WT, Cui SZ, Zheng Z, Hou HW, Chen WH (2015) Double metal ions synergistic effect in hierarchical multiple sulfide microflowers for enhanced supercapacitor performance. ACS Appl Mater Inter 7(7):4311–4319CrossRefGoogle Scholar
  39. 39.
    Xu J, Ju Z, Cao J, Wang W, Wang C, Chen Z (2016) Microwave synthesis of nitrogen-doped mesoporous carbon/nickel-cobalt hydroxide microspheres for high-performance supercapacitors. J Alloys Compd 689:489–499CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Petrochemical Engineering, Advanced Catalysis and Green Manufacturing Collaborative Innovation CenterChangzhou UniversityChangzhouChina
  2. 2.Department of Materials Science and EngineeringUniversity of DelawareNewarkUSA

Personalised recommendations