Advertisement

Polypyrrole nanotube modified by gold nanoparticles for improving the neural microelectrodes

  • Zohreh Deljoo Kojabad
  • Seyed Abbas ShojaosadatiEmail author
  • Seyed Mohammad Firoozabadi
  • Sepideh Hamedi
Original Paper
  • 20 Downloads

Abstract

High selectivity and low impedance are preferred properties for neural microelectrodes. The localized and controlled release of drugs from the nanostructured coatings may reduce brain tissue responses for chronic recordings. Here, polypyrrole (PPy) nanotube was chemically synthesized inside an alumina template. The formation of nanotube was confirmed by scanning electron microscopy (SEM) of the cross-section of templates. Then, PPy nanotube was loaded with dexamethasone (Dex) as a dopant during the polymerization process up to 93%. Successful loading of Dex molecules into the PPy nanotube was verified by the Fourier-transform infrared spectroscopy (FTIR). Gold nanoparticles were synthesized via the reduction of Au3+ ions on the surface of PPy nanotubes and were confirmed by transmission electron microscopy (TEM). The anodic electrophoretic deposition (EPD) method was successfully applied for deposition of 0.1 mg of the synthesized nanostructures on the surface of neural microelectrode in 20 min. Electrochemical impedance spectroscopy (EIS) showed a tenfold decrease in the impedance of the coated microelectrode as compared with the bare one. In vitro studies on U87MG cells demonstrated that the release of Dex from the coating reduced effectively the number of reactive astrocytes without any toxic side effects on SK-NMC and PC12 neuronal cells. Results also indicated that the release of Dex from the carrier can only occur by the electrical stimulation.

Keywords

Drug-loaded coating Polypyrrole nanotube Gold nanoparticle Neural microelectrode Dexamethasone Electrophoretic deposition 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Abidian MR, Corey JM, Kipke DR, Martin DC (2010) Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment, and neurite outgrowth of neural electrodes. Small 6(3):421–429CrossRefGoogle Scholar
  2. 2.
    Abidian MR, Ludwig KA, Marzullo TC, Martin DC, Kipke DR (2009) Interfacing conducting polymer nanotubes with the central nervous system: chronic neural recording using poly(3,4-ethylenedioxythiophene) nanotubes. Adv Mater 21(37):3764–3770CrossRefGoogle Scholar
  3. 3.
    Rui Y, Liu J, Wang Y, Yang C (2011) Parylene-based implantable Pt-black coated flexible 3-D hemispherical microelectrode arrays for improved neural interfaces. Microsyst Technol 17(3):437–442CrossRefGoogle Scholar
  4. 4.
    Leprince L, Dogimont A, Magnin D, Demoustier-Champagne S (2010) Dexamethasone electrically controlled release from polypyrrole-coated nanostructured electrodes. J Mater Sci Mater Med 21(3):925–930CrossRefGoogle Scholar
  5. 5.
    Kim D-H, Wiler JA, Anderson DJ, Kipke DR, Martin DC (2010) Conducting polymers on hydrogel-coated neural electrode provide sensitive neural recordings in auditory cortex. Acta Biomater 6(1):57–62CrossRefGoogle Scholar
  6. 6.
    Ravichandran R, Sundarrajan S, Venugopal JR, Mukherjee S, Ramakrishna S (2010) Applications of conducting polymers and their issues in biomedical engineering. J R Soc Interface 7(Suppl 5):S559–S579Google Scholar
  7. 7.
    Turco A, Mazzotta E, Di Franco C, Santacroce MV, Scamarcio G, Monteduro AG, Primiceri E, Malitesta C (2016) Templateless synthesis of polypyrrole nanowires by non-static solution-surface electropolymerization. J Solid State Electrochem 20(8):2143–2151CrossRefGoogle Scholar
  8. 8.
    Pournaghi-Azar MH, Ojani R (2000) Electrochemistry and electrocatalytic activity of polypyrrole/ferrocyanide films on a glassy carbon electrode. J Solid State Electrochem 4(2):75–79CrossRefGoogle Scholar
  9. 9.
    Mokrane S, Makhloufi L, Alonso-Vante N (2008) Electrochemistry of platinum nanoparticles supported in polypyrrole (PPy)/C composite materials. J Solid State Electrochem 12(5):569–574CrossRefGoogle Scholar
  10. 10.
    Syugaev AV, Maratkanova AN, Smirnov DA (2018) Molecular orientation in electrodeposited polypyrrole films. J Solid State Electrochem 22(7):2127–2134CrossRefGoogle Scholar
  11. 11.
    Liu X, Yue Z, Higgins MJ, Wallace GG (2011) Conducting polymers with immobilised fibrillar collagen for enhanced neural interfacing. Biomaterials 32(30):7309–7317CrossRefGoogle Scholar
  12. 12.
    Abidian MR, Martin DC (2008) Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes. Biomaterials 29(9):1273–1283CrossRefGoogle Scholar
  13. 13.
    Kang G, Borgens RB, Cho Y (2011) Well-ordered porous conductive polypyrrole as a new platform for neural interfaces. Langmuir 27(10):6179–6184CrossRefGoogle Scholar
  14. 14.
    Kotov NA, Winter JO, Clements IP, Jan E, Timko BP, Campidelli S, Pathak S, Mazzatenta A, Lieber CM, Prato M, Bellamkonda RV, Silva GA, Kam NWS, Patolsky F, Ballerini L (2009) Nanomaterials for neural interfaces. Adv Mater 21(40):3970–4004CrossRefGoogle Scholar
  15. 15.
    Christina H, Tim B, Thomas S (2011) Polymers for neural implants. J Polym Sci Part B Polym Phys 49:18–33CrossRefGoogle Scholar
  16. 16.
    Zhou D, Greenbaum E (2010) Implantable neural prostheses 2: techniques and engineering approaches. Biological and medical physics, biomedical engineering. Springer, New York.  https://doi.org/10.1007/978-0-387-98120-8 CrossRefGoogle Scholar
  17. 17.
    Annibaldi V, Hendy GM, Breslin CB (2019) Studies on the formation and properties of polypyrrole doped with ionised β-cyclodextrins: influence of the anionic pendants. J Solid State Electrochem 23(2):615–626CrossRefGoogle Scholar
  18. 18.
    Mazzotta E, Caroli A, Primiceri E, Monteduro AG, Maruccio G, Malitesta C (2017) All-electrochemical approach for the assembly of platinum nanoparticles/polypyrrole nanowire composite with electrocatalytic effect on dopamine oxidation. J Solid State Electrochem 21(12):3495–3504CrossRefGoogle Scholar
  19. 19.
    Gao W, Li J, Cirillo J, Borgens R, Cho Y (2014) Action at a distance: functional drug delivery using electromagnetic-field-responsive polypyrrole nanowires. Langmuir 30(26):7778–7788CrossRefGoogle Scholar
  20. 20.
    Alshammary B, Walsh FC, Herrasti P, Ponce de Leon C (2016) Electrodeposited conductive polymers for controlled drug release: polypyrrole. J Solid State Electrochem 20(4):839–859CrossRefGoogle Scholar
  21. 21.
    Deljoo Kojabad Z, Shojaosadati SA (2016) Chemical synthesis of polypyrrole nanostructures: optimization and applications for neural microelectrodes. Mater Des 96:378–384CrossRefGoogle Scholar
  22. 22.
    Hassanzadeh N, Omidvar H, Tabaian SH (2012) Chemical synthesis of high density and long polypyrrole nanowire arrays using alumina membrane and their hydrogen sensing properties. Superlattice Microst 51(3):314–323CrossRefGoogle Scholar
  23. 23.
    Sylvestre JP, Díaz-Marín C, Delgado-Charro MB, Guy RH (2008) Iontophoresis of dexamethasone phosphate: competition with chloride ions. J Control Release 131(1):41–46CrossRefGoogle Scholar
  24. 24.
    Shi K, Zhitomirsky I (2013) Electrophoretic nanotechnology of graphene–carbon nanotube and graphene–polypyrrole nanofiber composites for electrochemical supercapacitors. J Colloid Interface Sci 407:474–481CrossRefGoogle Scholar
  25. 25.
    Luo X, Matranga C, Tan S, Alba N, Cui XT (2011) Carbon nanotube nanoreservior for controlled release of anti-inflammatory dexamethasone. Biomaterials 32(26):6316–6323CrossRefGoogle Scholar
  26. 26.
    Weaver CL, LaRosa JM, Luo X, Cui XT (2014) Electrically controlled drug delivery from graphene oxide nanocomposite films. ACS Nano 8(2):1834–1843CrossRefGoogle Scholar
  27. 27.
    Wadhwa R, Lagenaur CF, Cui XT (2006) Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode. J Control Release 110(3):531–541CrossRefGoogle Scholar
  28. 28.
    Ding J, Wang H, Lin T, Lee B (2008) Electroless synthesis of nano-structured gold particles using conducting polymer nanoparticles. Synth Met 158(14):585–589CrossRefGoogle Scholar
  29. 29.
    Neoh KG, Tan KK, Goh PL, Huang SW, Kang ET, Tan KL (1999) Electroactive polymer–SiO2 nanocomposites for metal uptake. Polymer 40(4):887–893CrossRefGoogle Scholar
  30. 30.
    Yang J, Kim DH, Hendricks JL, Leach M, Northey R, Martin DC (2005) Ordered surfactant-templated poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymer on microfabricated neural probes. Acta Biomater 1(1):125–136CrossRefGoogle Scholar
  31. 31.
    Deng M, Yang X, Silke M, Qiu W, Xu M, Borghs G, Chen H (2011) Electrochemical deposition of polypyrrole/graphene oxide composite on microelectrodes towards tuning the electrochemical properties of neural probes. Sensors Actuators B Chem 158(1):176–184CrossRefGoogle Scholar
  32. 32.
    Zhong Y, Bellamkonda RV (2007) Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes. Brain Res 1148:15–27CrossRefGoogle Scholar
  33. 33.
    Sun T, Tsang WM, Park W-T (2014) Drug release from porous silicon for stable neural interface. Appl Surf Sci 292:843–851CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zohreh Deljoo Kojabad
    • 1
  • Seyed Abbas Shojaosadati
    • 2
    Email author
  • Seyed Mohammad Firoozabadi
    • 3
  • Sepideh Hamedi
    • 4
  1. 1.Nanomaterials Group, Faculty of Materials EngineeringTarbiat Modares UniversityTehranIran
  2. 2.Biotechnology Group, Faculty of Chemical EngineeringTarbiat Modares UniversityTehranIran
  3. 3.Medical Physics Group, Faculty of Medical ScienceTarbiat Modares UniversityTehranIran
  4. 4.Bio-refinery Group, Faculty of New Technologies EngineeringShahid Beheshti UniversityTehranIran

Personalised recommendations