Effect of silver coating on electrochemical performance of 0.5Li2MnO3.0.5 LiMn1/3Ni1/3Co1/3O2 cathode material for lithium-ion batteries

  • Halil ŞahanEmail author
  • Hüseyin Göktepe
  • Şaban Patat
  • Süleyman Yıldız
  • Burcu Özdemir
  • Ahmet Ülgen
  • Sanjeev Mukerjee
  • K. M. Abraham
Original Paper


In this work, a Li-rich layered 0.5Li2MnO3.0.5LiMn1/3Ni1/3Co1/3O2 (LMNCO) pristine cathode material synthesized with a glycine-nitrate combustion method is further coated with silver. The effects of silver coating on the material structure and performance of the as-prepared cathode are systemically studied with X-ray diffraction (XRD), scanning electron microscope (SEM), galvanostatic charge/discharge, cyclic voltammetry (CV), and electrochemical impedance spectra (EIS). Material characterizations and electrochemical measurements show that the surface modification does not lead to the change of crystal lattice parameter and particle morphology. It is found that the rate capability and cyclability can be significantly improved, which could be attributed to the enhancement of electronic conductivity of the particle surface of the cathode. It has been found that the obtained silver-coated LMNCO cathode exhibits excellent electrochemical characteristics. For example, it can deliver a high initial discharge capacity of 290 mAh g−1 between 2.0 and 4.9 V at a rate of 0.05C at room temperature and a discharge capacity of 159 mAh g−1 at 1 C, 128 mAh g−1at 2 C, and 101 mAh g−1 even at 5 C. EIS result shows that Rsf and Rct values of LMNCO are bigger than those of silver-coated LMNCO cathode.


Li-rich layered cathodes Lithium batteries Silver coating Capacity fade Cycling performance Cyclic voltammetry 



  1. 1.
    Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657CrossRefGoogle Scholar
  2. 2.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367CrossRefGoogle Scholar
  3. 3.
    Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603CrossRefGoogle Scholar
  4. 4.
    Armstrong AR, Bruce PG (1996) Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381(6582):499–500CrossRefGoogle Scholar
  5. 5.
    Toprakci O, Toprakci HA, Ying L, Liwen J, Leigang X, Lee H, Zhang S, Zhang X (2013) Synthesis and characterization of xLi2MnO3·(1−x)LiMn1/3Ni1/3Co1/3O2 composite cathode materials for rechargeable lithium-ion batteries. J Power Sources 241:522–528CrossRefGoogle Scholar
  6. 6.
    Yabuuchi N, Ohzuku T (2005) Electrochemical behaviors of LiCo1/3Ni1/3Mn1/3O2 in lithium batteries at elevated temperatures. J Power Sources 146(1-2):636–639CrossRefGoogle Scholar
  7. 7.
    Rao CV, Reddy ALM, Ishikawa Y, Ajayan PM (2011) LiNi1/3Co1/3Mn1/3O2–graphene composite as a promising cathode for lithium-ion batteries. ACS Appl Mater Interfaces 3:2966–2972CrossRefGoogle Scholar
  8. 8.
    Kim Y (2012) Lithium nickel cobalt manganese oxide synthesized using alkali chloride flux: morphology and performance as a cathode material for lithium ion batteries. ACS Appl Mater Interfaces 4(5):2329–2333CrossRefGoogle Scholar
  9. 9.
    Zheng J, Gu M, Xiao J, Zuo P, Wang C, Zhang LG (2013) Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process. Nano Lett 13(8):3824–3830CrossRefGoogle Scholar
  10. 10.
    Ates MN, Mukerjee S, Abraham KM (2015) A search for the optimum lithium rich layered metal oxide cathode material for Li-ion batteries. J Electrochem Soc 162(7):A1236–A1245CrossRefGoogle Scholar
  11. 11.
    Martha SK, Nanda J, Veith GM, Dudney NJ (2012) Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2. J Power Sources 199:220–226CrossRefGoogle Scholar
  12. 12.
    Xiao X, Lu P, Ahn D (2011) Ultra thin multifunctional oxide coatings for lithium ion batteries. Adv Mater 23(34):3911–3915CrossRefGoogle Scholar
  13. 13.
    Aurbach D (2003) Electrode–solution interactions in Li-ion batteries: a short summary and new insights. J Power Sources 119:497–503CrossRefGoogle Scholar
  14. 14.
    Arai H, Tsuda M, Saito K, Hayashi M, Sakurai Y (2002) Thermal reactions between delithiated lithium nickelate and electrolyte solutions. J Electrochem Soc 149(4):A401–A406CrossRefGoogle Scholar
  15. 15.
    Ates MN, Shah A, Mukerjee S, Abraham KM (2014) Mitigation of layered to spinel conversion of a Li-rich layered metal oxide cathode material for Li-ion batteries. J Electrochem Soc 161(3):A290–A301CrossRefGoogle Scholar
  16. 16.
    Zhang X, Belharouak I, Li L, Lei Y, Elam JV, Nie A, Chen X, Yassar R (2013) Structural and electrochemical study of Al2O3 and TiO2 coated Li1.2Ni0.13Mn0.54Co0.13O2 cathode material using ALD. Adv Energy Mater 3(10):1299–1307CrossRefGoogle Scholar
  17. 17.
    Zhao J, Aziz S, Wang Y (2014) Hierarchical functional layers on high-capacity lithium-excess cathodes for superior lithium ion batteries. J Power Sources 275:95–104CrossRefGoogle Scholar
  18. 18.
    Wu F, Wang Z, Su Y, Yan N, Bao L, Chen S (2014) Li[Li0.2Mn0.54Ni0.13Co0.13]O2–MoO3 composite cathodes with low irreversible capacity loss for lithium ion batteries. J Power Sources 247:20–25CrossRefGoogle Scholar
  19. 19.
    Sun YK, Lee MJ, Yoon CS, Hassoun J, Amine K, Scrosati B (2012) The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Adv Mater 24(9):1192–1196CrossRefGoogle Scholar
  20. 20.
    Son JT, Park KS, Kim HG, Chung HT (2004) Surface-modification of LiMn2O4 with a silver-metal coating. J Power Sources 126(1-2):182–185CrossRefGoogle Scholar
  21. 21.
    Göktepe H, Şahan H, Patat S (2016) Effect of silver and carbon double coating on the electrochemical performance of LiFePO4 cathode material for lithium ion batteries. Int J Hydrog Energy 41(23):9774–9779CrossRefGoogle Scholar
  22. 22.
    Stern KH (2000) High temperature properties and thermal decomposition of inorganic salts with oxyanions. CRC Press, New YorkGoogle Scholar
  23. 23.
    Lu ZH, Beaulieu YL, Donaberger RA, Thomas CL, Dahn JR (2002) Synthesis structure and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2. J Electrochem Soc 149(6):A778–A791CrossRefGoogle Scholar
  24. 24.
    Liu ZL, Yu AS, Lee JY (1999) Synthesis and characterization of LiNi1-x-yCoxMnyO2 as the cathode materials of secondary lithium batteries. J Power Sources 81:416–419CrossRefGoogle Scholar
  25. 25.
    Yoon WS, Kim N, Yang XQ, McBreen J, Grey CP (2003) 6Li MAS NMR and in situ X-ray studies of lithium nickel manganese oxides. J Power Sources 119:649–653CrossRefGoogle Scholar
  26. 26.
    Shen CH, Wang Q, Fu F, Huang L, Lin Z, Shen SY, Su H, Zheng XM, Xu BB, Li JT, Sun SG (2014) Facile synthesis of the Li-rich layered oxide Li1.23Ni0.09Co0.12Mn0.56O2 with superior lithium storage performance and new insights into structural transformation of the layered oxide material during charge–discharge cycle: in situ XRD characterization. ACS Appl Mater Interfaces 6(8):5516–5524CrossRefGoogle Scholar
  27. 27.
    Ates MN, Mukerjee S, Abraham KM (2015) A high rate Li-rich layered MNC cathode material for lithium-ion batteries. RCS Adv 5:27375–27386Google Scholar
  28. 28.
    Thackeray MM, Christopher CS, Johnson S (2005) Advances in manganese-oxide composite electrodes for lithium-ion batteries. J Mater Chem 15(23):2257–2267CrossRefGoogle Scholar
  29. 29.
    Lin J, Mu D, Jin Y, Wu B, Ma Y (2013) Li-rich layered composite Li[Li0.2Ni0.2Mn0.6]O2 synthesized by a novel approach as cathode material for lithium ion battery. J Power Sources 230:76–80CrossRefGoogle Scholar
  30. 30.
    Thackeray MM, Kang SH, Johnson CS (2007) Li2MnO3-stabilized LiMO2(M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17(30):3112–3125CrossRefGoogle Scholar
  31. 31.
    Tan KS, Reddy MV, Subba GV, Chowdari BV, Tan R (2005) Effect of AlPO4-coating on cathodic behaviour of Li(Ni0.8Co0.2)O2. J Power Sources 141(1):129–142CrossRefGoogle Scholar
  32. 32.
    Meyers JP, Doyle M, Darling RM, Newman J (2000) The impedance response of a porous electrode composed of intercalation particles. J Electrochem Soc 147(8):2930–2940CrossRefGoogle Scholar
  33. 33.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  34. 34.
    Zhang L, Duan YX, Peng G, Liang G, Huang YH, Jiang Y, Ni S, Li M (2013) Reduced graphene oxide modified Li2FeSiO4/C composite with enhanced electrochemical performance as cathode material for lithium ion batteries. ACS Appl Mater Interfaces 5:2304–12309Google Scholar
  35. 35.
    Wang X, Hao H, Liu J, Huang T (2011) A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries. Electrochim Acta 56(11):4065–4069CrossRefGoogle Scholar
  36. 36.
    Yan J, Liu X, Li B (2014) Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries. RSC Adv 4(108):63268–63284CrossRefGoogle Scholar
  37. 37.
    Deng H, Belharouak I, Yoon CS, Sun YK (2010) High temperature performance of surface-treated Li1.1(Ni0.15Co0.1Mn0.55)O1.95 layered oxide. J Electrochem Soc 157(10):A1035–A1039CrossRefGoogle Scholar
  38. 38.
    Wu Y (2006) A high capacity, surface-modified layered Li[Li(1-x)∕3Mn(2- x)∕3Nix∕3Cox∕3]O2 cathodes with low irreversible capacity loss. Electrochem Solid-State Lett 9(5):A221–A224CrossRefGoogle Scholar
  39. 39.
    Liu J, Reeja-Jayan B, Manthiram A (2010) Conductive surface modification with aluminum of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes. J Phys Chem C 14:9528–9533CrossRefGoogle Scholar
  40. 40.
    Sun YK, Lee YS, Yoshio M, Amine K (2002) Synthesis and electrochemical properties of ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V cathode material for lithium secondary batteries. Electrochem Solid-State Lett 5(5):A99–A102CrossRefGoogle Scholar
  41. 41.
    Cho J, Kim TJ, Kim J, Noh M (2004) Synthesis, thermal, and electrochemical properties of AlPO4-coated LiNi0.8Co0.1Mn0.1O2 cathode materials for a Li-ion cell. J Electrochem Soc 11:A1899–A1904CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Renewable Energy Technology, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonUSA
  2. 2.Science Faculty, Deparment of ChemistryErciyes UniversityKayseriTurkey

Personalised recommendations