Enhanced electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 composited with Ti3C2Tx MXene nanosheets

  • Zhitang Fang
  • Bangchuan ZhaoEmail author
  • Jiafeng Zhou
  • Jin Bai
  • Kunzhen Li
  • Hongyang Ma
  • Shuai LinEmail author
  • Xuebin Zhu
  • Yuping Sun
Original Paper


Li1.2Ni0.13Co0.13Mn0.54O2/Ti3C2Tx (LMR/TC) composite materials have been synthesized through mixing LMR particles with TC nanosheets. SEM result shows that most LMR particles are anchored on the surface of the Ti3C2Tx nanosheets. Such a structure can short the diffusion pathway for both the electron and lithium ions, enhancing electronic and ionic conductivities. Meanwhile, the composite structure keeps much stable during charge/discharge processes, leading to an enhanced cycling performance of the cathode. The LMR/TC (5 wt% Ti3C2Tx) composite electrode delivers an initial discharge capacity of 279.9 mA h g−1 at 0.1 C with coulombic efficiency of 81.8% and the capacity can maintain 248 mA h g−1 after 100 cycles with capacity retention of 85.7%. In contrast, the initial coulombic efficiency and the capacity retention after 100 cycles at same conditions of the pristine LMR electrode are only 67.1% and 67.6%, respectively. The composited cathode also shows an enhanced rate capacity compared to the pristine LMR.


Li1.2Ni0.13Co0.13Mn0.54O2 Ti3C2Tx nanosheets Composite structure Capacity retention 


Funding information

This work is supported by the National Key Research and Development Program under Contract No. 2017YFA0402800 and the National Natural Science Foundation of China under Contract Nos. U1732160 and 11504380.

Supplementary material

10008_2019_4232_MOESM1_ESM.docx (148 kb)
ESM 1 (DOCX 147 kb)


  1. 1.
    Hu G, Qi X, Hu K, Lai X, Zhang X, Du K, Peng Z, Cao Y (2018) A facile cathode design with a LiNi0.6Co0.2Mn0.2O2 core and an AlF3-activated Li1.2Ni0.2Mn0.6O2 shell for Li-ion batteries. Electrochim Acta 265:391–399CrossRefGoogle Scholar
  2. 2.
    Zuo Y, Li B, Jiang N, Chu W, Zhang H, Zou R, Xia D (2018) A high-capacity O2-type Li-rich cathode material with a single-layer Li2MnO3 superstructure. Adv Mater 30(16):1707255CrossRefGoogle Scholar
  3. 3.
    Chang M, Wang H, Zheng Y, Li N, Chen S, Wan Y, Yuan F, Shao W, Xu S (2018) Surface modification of hollow microsphere Li1.2Ni1/3Co1/3Mn1/3O2 cathode by coating with CoAl2O4. J Solid State Electrochem 23:607–613CrossRefGoogle Scholar
  4. 4.
    Xu H, Chen Y, Li Y, Kong L, Li H, Xu C, Su Q, Ren M (2018) Synthesis of single-crystal magnesium-doped spinel lithium manganate and its applications for lithium-ion batteries. J Solid State Electrochem 22(12):3735–3742CrossRefGoogle Scholar
  5. 5.
    Zheng J, Myeong S, Cho W, Yan P, Xiao J, Wang C, Cho J, Zhang J-G (2017) Li- and Mn-rich cathode materials: challenges to commercialization. Adv Energy Mater 7(6):1601284CrossRefGoogle Scholar
  6. 6.
    Chen JJ, Li ZD, Xiang HF, Wu WW, Guo X, Wu YC (2014) Bifunctional effects of carbon coating on high-capacity Li1.2Ni0.13Co0.13Mn0.54O2 cathode for lithium-ion batteries. J Solid State Electrochem 19:1027–1035CrossRefGoogle Scholar
  7. 7.
    Li ZD, Zhang YC, Xiang HF, Ma XH, Yuan QF, Wang QS, Chen CH (2013) Trimethyl phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode. J Power Sources 240:471–475CrossRefGoogle Scholar
  8. 8.
    Zhang LL, Chen JJ, Cheng S, Xiang HF (2016) Enhanced electrochemical performances of Li1.2Ni0.2Mn0.6O2 cathode materials by coating LiAlO2 for lithium-ion batteries. Ceram Int 42(1):1870–1878CrossRefGoogle Scholar
  9. 9.
    Liu W, Oh P, Liu X, Myeong S, Cho W, Cho J (2015) Countering voltage decay and capacity fading of lithium-rich cathode material at 60 °C by hybrid surface protection layers. Adv Energy Mater 5(13):1500274CrossRefGoogle Scholar
  10. 10.
    Wang YX, Shang KH, He W, Ai XP, Cao YL, Yang HX (2015) Magnesium-doped Li1.2[Co0.13Ni0.13Mn0.54]O2 for lithium-ion battery cathode with enhanced cycling stability and rate capability. ACS Appl Mater Interfaces 7(23):13014–13021CrossRefGoogle Scholar
  11. 11.
    Xu M, Fei L, Zhang W, Li T, Lu W, Zhang N, Lai Y, Zhang Z, Fang J, Zhang K, Li J, Huang H (2017) Tailoring anisotropic Li-ion transport tunnels on orthogonally arranged Li-rich layered oxide nanoplates toward high-performance Li-ion batteries. Nano Lett 17(3):1670–1677CrossRefGoogle Scholar
  12. 12.
    Shi PC, Guo JP, Liang X, Cheng S, Zheng H, Wang Y, Chen CH, Xiang HF (2018) Large-scale production of high-quality graphene sheets by a non-electrified electrochemical exfoliation method. Carbon 126:507–513CrossRefGoogle Scholar
  13. 13.
    Xiang HF, Li ZD, Xie K, Jiang JZ, Chen JJ, Lian PC, Wu JS, Yu Y, Wang HH (2012) Graphene sheets as anode materials for Li-ion batteries: preparation, structure, electrochemical properties and mechanism for lithium storage. RSC Adv 2(17):6792CrossRefGoogle Scholar
  14. 14.
    Liu Z, Guo R, Li F, Zheng M, Wang B, Li T, Luo Y, Meng L (2018) Reduced graphene oxide bridged, TiO2 modified and Mn3O4 intercalated Ti3C2Tx sandwich-like nanocomposite as a high performance anode for enhanced lithium storage applications. J Alloys Compd 762:643–652CrossRefGoogle Scholar
  15. 15.
    Shen C, Cao Y, Zhou A, Hu Q, Qin G, Yang Z, Liu X, Wang L (2018) Novel Li4Ti5O12/Ti3C2Tx nanocomposite as a high rate anode material for lithium ion batteries. J Alloys Compd 735:530–535CrossRefGoogle Scholar
  16. 16.
    Wang Y, Li Y, Qiu Z, Wu X, Zhou P, Zhou T, Zhao J, Miao Z, Zhou J, Zhuo S (2018) Fe3O4@Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries. J Mater Chem A 6(24):11189–11197CrossRefGoogle Scholar
  17. 17.
    Li X, Qian Y, Liu T, Cao F, Zang Z, Sun X, Sun S, Niu Q, Wu J (2018) Enhanced lithium and electron diffusion of LiFePO4 cathode with two-dimensional Ti3C2 MXene nanosheets. J Mater Sci 53(15):11078–11090CrossRefGoogle Scholar
  18. 18.
    Seteni B, Rapulenyane N, Ngila JC, Mpelane S, Luo H (2017) Coating effect of LiFePO4 and Al2O3 on Li1.2Mn0.54Ni0.13Co0.13O2 cathode surface for lithium ion batteries. J Power Sources 353:210–220CrossRefGoogle Scholar
  19. 19.
    Driscoll N, Richardson AG, Maleski K, Anasori B, Adewole O, Lelyukh P, Escobedo L, Cullen DK, Lucas TH, Gogotsi Y, Vitale F (2018) Two-dimensional Ti3C2 MXene for high-resolution neural interfaces. ACS Nano 12(10):10419–10429CrossRefGoogle Scholar
  20. 20.
    Zhang H, Yang T, Han Y, Song D, Shi X, Zhang L, Bie L (2017) Enhanced electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 by surface modification with the fast lithium-ion conductor Li-La-Ti-O. J Power Sources 364:272–279CrossRefGoogle Scholar
  21. 21.
    Chen Q, Luo L, Wang L, Xie T, Dai S, Yang Y, Li Y, Yuan M (2018) Enhanced electrochemical properties of Y2O3-coated-(lithium-manganese)-rich layered oxides as cathode materials for use in lithium-ion batteries. J Alloys Compd 735:1778–1786CrossRefGoogle Scholar
  22. 22.
    Jiang C, Zou Z (2018) Sheet-like Li1.2Mn0.54Ni0.16Co0.10O2 prepared by glucose-urea bubbling and post-annealing process as high capacity cathode of Li-ion batteries. Electrochim Acta 269:196–203CrossRefGoogle Scholar
  23. 23.
    Ren M, Yang M, Liu W, Li M, Su L, Wu X, Wang Y (2016) Co-modification of nitrogen-doped graphene and carbon on Li3V2(PO4)3 particles with excellent long-term and high-rate performance for lithium storage. J Power Sources 326:313–321CrossRefGoogle Scholar
  24. 24.
    Fan J, Li G, Luo D, Fu C, Li Q, Zheng J, Li L (2015) Hydrothermal-assisted synthesis of Li-rich layered oxide microspheres with high capacity and superior rate-capability as a cathode for lithium-ion batteries. Electrochim Acta 173:7–16CrossRefGoogle Scholar
  25. 25.
    Liu Y, Yang Z, Li J, Niu B, Yang K, Kang F (2018) A novel surface-heterostructured Li1.2Ni0.13Co0.13Mn0.54O2@Ce0.8Sn0.2O2−σ cathode material for Li-ion batteries with improved initial irreversible capacity loss. J Mater Chem A 6(28):13883–13893CrossRefGoogle Scholar
  26. 26.
    Wang Y, Gu H-T, Song J-H, Feng Z-H, Zhou X-B, Zhou Y-N, Wang K, Xie J-Y (2018) Suppressing Mn reduction of Li-rich Mn-based cathodes by F-doping for advanced lithium-ion batteries. J Phys Chem C 122(49):27836–27842CrossRefGoogle Scholar
  27. 27.
    Li H, Zhang S, Wei X, Yang P, Jian Z, Meng J (2016) Glucose-assisted combustion synthesis of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials with superior electrochemical performance for lithium-ion batteries. RSC Adv 6(82):79050–79057CrossRefGoogle Scholar
  28. 28.
    Ding W, Cui X, Lei J, Lin X, Zhao S, Wu Q-H, Zheng M, Dong Q (2018) Hollow spherical lithium-rich layered oxide cathode material with suppressed voltage fading. Electrochim Acta 264:260–268CrossRefGoogle Scholar
  29. 29.
    Zhao T, Gao X, Wei Z, Guo K, Wu F, Li L, Chen R (2018) Three-dimensional Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials synthesized by a novel hydrothermal method for lithium-ion batteries. J Alloys Compd 757:16–23CrossRefGoogle Scholar
  30. 30.
    Wu X, Wang Z, Yu M, Xiu L, Qiu J (2017) Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv Mater 29(24):1607017CrossRefGoogle Scholar
  31. 31.
    Hou X, Huang Y, Ma S, Zou X, Hu S, Wu Y (2015) Facile hydrothermal method synthesis of coralline-like Li1.2Ni0.13Co0.13Mn0.54O2 hierarchical architectures as superior cathode materials for lithium-ion batteries. Mater Res Bull 63:256–264CrossRefGoogle Scholar
  32. 32.
    Luo D, Fang S, Yang L, Hirano S-i (2017) High-rate and long-life Li1.18Mn0.56Ni0.13Co0.13O2 cathodes of Li-ion batteries. J Alloys Compd 723:243–251CrossRefGoogle Scholar
  33. 33.
    Yu R, Zhang Z, Jamil S, Chen J, Zhang X, Wang X, Yang Z, Shu H, Yang X (2018) Effects of nanofiber architecture and antimony doping on the performance of lithium-rich layered oxides: enhancing lithium diffusivity and lattice oxygen stability. ACS Appl Mater Interfaces 10(19):16561–16571CrossRefGoogle Scholar
  34. 34.
    Zhang S, Gu H, Pan H, Yang S, Du W, Li X, Gao M, Liu Y, Zhu M, Ouyang L, Jian D, Pan F (2017) A novel strategy to suppress capacity and voltage fading of Li- and Mn-rich layered oxide cathode material for lithium-ion batteries. Adv Energy Mater 7(6):1601066CrossRefGoogle Scholar
  35. 35.
    Lee H, Lim SB, Kim JY, Jeong M, Park YJ, Yoon WS (2018) Characterization and control of irreversible reaction in Li-rich cathode during the initial charge process. ACS Appl Mater Interfaces 10(13):10804–10818CrossRefGoogle Scholar
  36. 36.
    Wu B, Yang X, Jiang X, Zhang Y, Shu H, Gao P, Liu L, Wang X (2018) Synchronous tailoring surface structure and chemical composition of Li-rich-layered oxide for high-energy lithium-ion batteries. Adv Funct Mater 28(37):1803392CrossRefGoogle Scholar
  37. 37.
    Li J, Xu C, Zhao J, Chen J, Cao C (2018) Li-rich nanoplates of Li1.2Ni0.13Co0.13Mn0.54O2 layered oxide with exposed {010} planes as a high-performance cathode for lithium-ion batteries. J Alloys Compd 734:301–306CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and Materials ScienceAnhui UniversityHefeiPeople’s Republic of China
  2. 2.Key Laboratory of Materials Physics, Institute of Solid State PhysicsChinese Academy of SciencesHefeiPeople’s Republic of China
  3. 3.High Magnetic Field LaboratoryChinese Academy of SciencesHefeiPeople’s Republic of China

Personalised recommendations