Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 4, pp 1289–1296 | Cite as

Morphology evolution effects on electrochemical activity of hierarchically stacking SnO2-Sb/TiO2-NTs electrode prepared by the hydrothermal method

  • Xianze Gao
  • Tigang DuanEmail author
  • Li Ma
  • Jian Hou
  • Yonglei Xin
  • Jianping Du
  • Ye ChenEmail author
Original Paper
  • 13 Downloads

Abstract

Distinct three-dimensional hierarchically stacking SnO2-Sb/TiO2-NTs electrode with a good-adhesion TiO2-NTs@SnO2-Sb interlayer, a compact plate SnO2-Sb middle layer, and an apparent uniform microsphere layer was successfully prepared through the hydrothermal method. The evolution of micro-morphology and structure of electrode catalyst layer was realized so as to improve the catalytic performance of electrode through tuning the hydrochloric acid concentration. Experimental results show that SnO2-Sb/TiO2-NTs electrode prepared in 0.5 mol L−1 HCl condition possesses the optimal performance containing a low phenol oxidation potential of 1.2 V (vs. SCE), and a maximum current density of 3.8 mA cm−2 towards phenol degradation in phosphate buffered solution. The electrochemical phenol removal results show that the phenol degradation process coincides with the first-order kinetics and the corresponding optimal constant reaches 14.2 × 10−3 min−1. The TOC removal efficiency of optimal electrode reaches 62%.

Graphical abstract

The evolution of micro-morphology and structure of electrode was realized through tuning the hydrochloric acid concentration so as to improve the catalytic performance of electrode.

Keywords

SnO2-Sb/TiO2-NTs electrode Morphology evolution Hydrothermal method Hierarchically stacking Phenol degradation 

Notes

References

  1. 1.
    Martínez-Huitle CA, Rodrigo MA, Sires I, Scialdone O (2015) Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem Rev 115(24):13362–13407CrossRefGoogle Scholar
  2. 2.
    Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109(12):6541–6569CrossRefGoogle Scholar
  3. 3.
    Chaplin BP (2014) Critical review of electrochemical advanced oxidation processes for water treatment applications. Environ Sci Proc Impacts 16(6):1182–1203CrossRefGoogle Scholar
  4. 4.
    Chen G (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38(1):11–41CrossRefGoogle Scholar
  5. 5.
    Rao ANS, Venkatarangaiah VT (2014) Metal oxide-coated anodes in wastewater treatment. Environ Sci Pollut R 21:3197–3217CrossRefGoogle Scholar
  6. 6.
    Wu W, Huang Z-H, Lim T-T (2014) Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water. App Catal A-Gen 480:58–78CrossRefGoogle Scholar
  7. 7.
    Christensen PA, Zakaria K, Christensen H, Yonard T (2013) The effect of Ni and Sb oxide precursors, and of Ni composition, synthesis conditions and operating parameters on the activity, selectivity and durability of Sb-doped SnO2 anodes modified with Ni. J Electrochem Soc 160(8):H405–H413CrossRefGoogle Scholar
  8. 8.
    Duan T, Chen Y, Wen Q, Duan Y (2014) Enhanced electrocatalytic activity of nano-TiN composited Ti/Sb–SnO2 electrode fabricated by pulse electrodeposition for methylene blue decolorization. RSC Adv 4(101):57463–57475CrossRefGoogle Scholar
  9. 9.
    Duverneuil P, Maury F, Pebere N, Senocq F, Vergnes H (2002) Chemical vapor deposition of SnO2 coatings on Ti plates for thepreparation of electrocatalytic anodes. Surf Coat Technol 151-152:9–13CrossRefGoogle Scholar
  10. 10.
    Montero J, Guillén C, Herrero J (2012) Nanocrystalline antimony doped tin oxide (ATO) thin films: a thermal restructuring study. Surf Coat Technol 211:37–40CrossRefGoogle Scholar
  11. 11.
    Xu H, Zhang Q, Yan W, Chu W (2011) A composite Sb-doped SnO2 electrode based on the TiO2 nanotubes prepared by hydrothermal synthesis. Int J Electrochem Sc 6:6639–6652Google Scholar
  12. 12.
    Huang AS, Zhao GH, Li HX (2007) High quality Sb-doped SnO2 electrodes with high oxygen evolution potential prepared by in situ hydrothermal synthesis method. Chin Chem Lett 18(8):997–1000CrossRefGoogle Scholar
  13. 13.
    Cui X, Zhao G, Lei Y, Li H, Li P, Liu M (2009) Novel vertically aligned TiO2 nanotubes embedded with Sb-doped SnO2 electrode with high oxygen evolution potential and long service time. Mater Chem Phys 113(1):314–321CrossRefGoogle Scholar
  14. 14.
    Zhao G, Cui X, Liu M, Li P, Zhang Y, Cao T, Li H, Lei Y, Liu L, Li D (2009) Electrochemical degradation of refractory pollutant using a novel microstructured TiO2 nanotubes/Sb-doped SnO2 electrode. Environ Sci Technol 43(5):1480–1486CrossRefGoogle Scholar
  15. 15.
    Guo Y, Duan T, Chen Y, Wen Q (2015) Solvothermal fabrication of three-dimensionally sphere-stacking Sb-SnO2 electrode based on TiO2 nanotube arrays. Ceram Int 41(7):8723–8729CrossRefGoogle Scholar
  16. 16.
    Li Y, Shen W (2014) Morphology-dependent nanocatalysts: rod-shaped oxides. Chem Soc Rev 43(5):1543–1574CrossRefGoogle Scholar
  17. 17.
    Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48(1):60–103CrossRefGoogle Scholar
  18. 18.
    Peralta E, Roa G, Hernandez-Servin JA, Romero R, Balderas P, Natividad R (2014) Hydroxyl radicals quantification by UV spectrophotometry. Electrochim Acta 129:137–141CrossRefGoogle Scholar
  19. 19.
    Harris D C (2007) Quantitative chemical analysis, 7th ed., W. H. Freeman and CompanyGoogle Scholar
  20. 20.
    Duan T, Ma L, Chen Y, Ma X, Hou J, Lin C, Sun M (2018) Morphology-dependent activities of TiO2-NTs@Sb-SnO2 electrodes for efficient electrocatalytic methyl orange decolorization. J Solid State Electrochem 22(6):1871–1879CrossRefGoogle Scholar
  21. 21.
    Yang L, Liu J, Huang L, Zhang Z, Yu Y, Liu J, Logan BE, Feng Y (2018) Fabrication of nano-structured stacked sphere SnO2-Sb electrode with enhanced performance using a situ solvothermal synthesis method. J Electrochem Soc 165(5):E208–E213CrossRefGoogle Scholar
  22. 22.
    Bai F, He Y, He P, Tang Y, Jia Z (2006) One-step synthesis of monodispersed antimony-doped tin oxide suspension. Mater Lett 60(25-26):3126–3129CrossRefGoogle Scholar
  23. 23.
    Nütz T, Haase M (2000) Wet-chemical synthesis of doped nanoparticles: optical properties of oxygen-deficient and antimony-Ddoped colloidal SnO2. J Phys Chem B 104(35):8430–8437CrossRefGoogle Scholar
  24. 24.
    Sladkevich S, Mikhaylov AA, Prikhodchenko PV, Tripol’skaya TA, Lev O (2010) Antimony tin oxide (ATO) nanoparticle formation from H2O2 solutions: a new generic film coating from basic solutions. Inorg Chem 49(20):9110–9112CrossRefGoogle Scholar
  25. 25.
    Meng X, Zhang Y, Sun S, Li R, Sun X (2011) Three growth modes and mechanisms for highly structure-tunable SnO2 nanotube arrays of template-directed atomic layer deposition. J Mater Chem 21(33):12321–12330CrossRefGoogle Scholar
  26. 26.
    Gorlin Y, Jaramillo TF (2010) A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J Am Chem Soc 132(39):13612–13614CrossRefGoogle Scholar
  27. 27.
    Mamtani K, Jain D, Dogu D, Gustin V, Gunduz S, Co AC, Ozkan US (2018) Insights into oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) active sites for nitrogen-doped carbon nanostructures (CNx) in acidic media. Appl Catal B-Environ 220:88–97CrossRefGoogle Scholar
  28. 28.
    Chen Y, Hong L, Xue H, Han W, Wang L, Sun X, Li J (2010) Preparation and characterization of TiO2-NTs/SnO2-Sb electrodes by electrodeposition. J Electroanal Chem 648(2):119–127CrossRefGoogle Scholar
  29. 29.
    Duan T, Wen Q, Chen Y, Zhou Y, Duan Y (2014) Enhancing electrocatalytic performance of Sb-doped SnO2 electrode by compositing nitrogen-doped graphene nanosheets. J Hazard Mater 280:304–314CrossRefGoogle Scholar
  30. 30.
    Loloi M, Rezaee A, Aliofkhazraei M, Rouhaghdam AS (2016) Electrocatalytic oxidation of phenol from wastewater using Ti/SnO2-Sb2O4 electrode: chemical reaction pathway study. Environ Sci Pollut Res 23(19):19735–19743CrossRefGoogle Scholar
  31. 31.
    Martínez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 35(12):1324–1340CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory for Marine Corrosion and ProtectionLuoyang Ship Material Research Institute (LSMRI)QingdaoChina
  2. 2.Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Material Science and Chemical EngineeringHarbin Engineering UniversityHarbinChina

Personalised recommendations