Journal of Solid State Electrochemistry

, Volume 23, Issue 4, pp 1257–1267 | Cite as

Electrochemistry of hydrogen peroxide reduction reaction on carbon paste electrodes modified by Ag- and Pt-supported carbon microspheres

  • Marjan S. Randjelović
  • Milan Z. MomčilovićEmail author
  • Dirk Enke
  • Valentin Mirčeski
Original Paper


A simple and facile hydrothermal methodology for preparation of carbon microspheres supported with silver or platinum is presented. Electrocatalytic properties of modified carbon microspheres are tested against the electrochemical reduction reaction of hydrogen peroxide. As revealed by transmission electron microscopy, silver and platinum are immobilized on the surface of carbon microspheres in a form of nanoparticles. In addition, scanning electron microscopy reveals coexistence of smooth surface spherical-shaped carbon microspheres together with clusters that resemble a bunch-of-grapes. Carbon paste electrodes in combination with cyclic and square-wave voltammetry are used to study electrocatalytic properties of carbon microspheres. Voltammetric data are analyzed in light of the theory for simple irreversible electrode reaction. Correlation between experimental and theoretical data implies the highest electrocatalytic effect in the case of silver-modified carbon microspheres, though the electrode mechanism is more complex than theoretically predicted.


Carbon microspheres Electrocatalysis Hydrogen peroxide Square-wave voltammetry 



This work was supported by the DAAD foundation through a multilateral project “International Masters and Postgraduate Programme in Materials Science and Catalysis” (MatCatNet) and the Serbian Ministry of Education, Science, and Technological Development through the framework of the projects TR 34008 and III 43009. VM acknowledges with gratitude the support through the NATO grant SPS G5550.


  1. 1.
    Didier VF, Batista AUD, Montenegro RV, Fonseca RB, Galbiatti de Carvalho F, de Barros S, Carlo HL (2013) Influence of hydrogen peroxide-based bleaching agents on the bond strength of resin enamel/dentin interfaces. Int J Adhes Adhes 47:141–145CrossRefGoogle Scholar
  2. 2.
    Kopania E, Stupińska H, Palenik J (2008) Susceptibility of deinked waste paper mass to peroxide bleaching. Fibres Text East Eur 16:112–116Google Scholar
  3. 3.
    Józwiakowski K, Marzec M, Fiedurek J, Kaminska A, Gajewska M, Wojciechowska E, Wu S, Dach J, Marczuk A, Kowlaczyk-Jusko A (2017) Application of H2O2 to optimize ammonium removal from domestic wastewater. Sep Purif Technol 17:357–363CrossRefGoogle Scholar
  4. 4.
    Labas MD, Zalazar CS, Brandi RJ, Cassano AE (2008) Reaction kinetics of bacteria disinfection employing hydrogen peroxide. Biochem Eng J 38:78–87CrossRefGoogle Scholar
  5. 5.
    Moon Y, Park C, Jo S, Kwon S (2014) Design specifications of H2O2/kerosene bipropellant rocket system for space mission. Aerosp Sci Technol 33:118–121CrossRefGoogle Scholar
  6. 6.
    Jones CW (1999) Applications of hydrogen peroxide and derivatives. In: Clark JH (ed) RSC clean technology monographs. Royal Society of Chemistry, CambridgeGoogle Scholar
  7. 7.
    Mostofa KMG, Sakugawa H (2016) Simultaneous photoinduced generation of Fe2+ and H2O2 in rivers: an indicator for photo-Fenton reaction. J Environ Sci Health A 47:34–38Google Scholar
  8. 8.
    Gimeno P, Bousquet C, Lassu N, Maggio AF, Civade C, Brenier C, Lempereur L (2015) High-performance liquid chromatography method for the determination of hydrogen peroxide present or released in teeth bleaching kits and hair cosmetic products. J Pharm Biomed Anal 107:386–393CrossRefGoogle Scholar
  9. 9.
    Sunil K, Narayana B (2008) Spectrophotometric determination of hydrogen peroxide in water and cream samples. Bull Environ Contam Toxicol 81:422–426CrossRefGoogle Scholar
  10. 10.
    Zscharnack K, Kreisig T, Prasse AA, Zuchner T (2014) A luminescence-based probe for sensitive detection of hydrogen peroxide in seconds. Anal Chim Acta 834:51–57CrossRefGoogle Scholar
  11. 11.
    Jonnalagadda SB, Gengan P (2010) Titrimetric and photometric methods for determination of hypochlorite in commercial bleaches. J Environ Sci Health A 45:917–922CrossRefGoogle Scholar
  12. 12.
    Viswanathan P, Ramaraj R (2016) Polyelectrolyte assisted synthesis and enhanced catalysis of silver nanoparticles: electrocatalytic reduction of hydrogen peroxide and catalytic reduction of 4-nitroaniline. J Mol Catal A Chem 424:128–134CrossRefGoogle Scholar
  13. 13.
    Kalijadis A, Đorđević J, Trtić-Petrović T, Vukčević M, Popović M, Maksimović V, Rakocevic Z, Lausevic Z (2015) Preparation of boron-doped hydrothermal carbon from glucose for carbon paste electrode. Carbon 95:42–50CrossRefGoogle Scholar
  14. 14.
    Taylor S, Patru A, Streich D, El Kazzi M, Fabbri E, Schmidt T (2016) Vanadium (V) reduction reaction on modified glassy carbon electrodes - role of oxygen functionalities and microstructure. Carbon 109:472–478CrossRefGoogle Scholar
  15. 15.
    Lee KK, Loh PY, Sow CH, Chin WS (2013) CoOOH nanosheet electrodes: simple fabrication for sensitive electrochemical sensing of hydrogen peroxide and hydrazine. Biosens Bioelectron 39:255–260CrossRefGoogle Scholar
  16. 16.
    Liu D, Guo Q, Zhang X, Hou H, You T (2015) PdCo alloy nanoparticle–embedded carbon nanofiber for ultrasensitive nonenzymatic detection of hydrogen peroxide and nitrite. J Colloid Interface Sci 450:168–173CrossRefGoogle Scholar
  17. 17.
    Li C, Li M, Bo X, Yang L, Mtukula AC, Guo L (2016) Facile synthesis of electrospinning Mn2O3-Fe2O3 loaded carbon fibers for electrocatalysis of hydrogen peroxide reduction and hydrazine oxidation. Electrochim Acta 211:255–264CrossRefGoogle Scholar
  18. 18.
    Šljukić B, Banks CE, Crossley A, Compton RG (2006) Iron(III) oxide graphite composite electrodes: application to the electroanalytical detection of hydrazine and hydrogen peroxide. Electroanalysis 18:1757–1762CrossRefGoogle Scholar
  19. 19.
    Bo X, Bai J, Ju J, Guo L (2010) A sensitive amperometric sensor for hydrazine and hydrogen peroxide based on palladium nanoparticles/onion-like mesoporous carbon vesicle. Anal Chim Acta 675:29–35CrossRefGoogle Scholar
  20. 20.
    Gong K (2015) Vertically-aligned sandwich nanowires enhance the photoelectrochemical reduction of hydrogen peroxide: hierarchical formation on carbon nanotubes of cadmium sulfide quantum dots and Prussian blue nanocoatings. J Colloid Interface Sci 449:80–86CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Li Y, Jiang Y, Li Y, Li S (2016) The synthesis of au@C@Pt core-double shell nanocomposite and its application in enzyme-free hydrogen peroxide sensing. Appl Surf Sci 378:375–383CrossRefGoogle Scholar
  22. 22.
    Sofer Z, Jankovsky O, Šimek P, Klımova K, Mackova A, Pumera M (2014) Uranium- and thorium-doped graphene for efficient oxygen and hydrogen peroxide reduction. ACS Nano 8:7106–7114CrossRefGoogle Scholar
  23. 23.
    Ranđelović M, Momčilović M, Matović B, Babić B, Barek J (2015) Cyclic voltammetry as a tool for model testing of catalytic Pt- and ag-doped carbon microspheres. J Electroanal Chem 757:176–182CrossRefGoogle Scholar
  24. 24.
    Lia S, Yanc X, Yang Z, Yang Y, Liub X, Zoua J (2014) Preparation and antibacterial property of silver decorated carbon microspheres. Appl Surf Sci 292:480–487CrossRefGoogle Scholar
  25. 25.
    Cai X, Kalcher K, Kolbl G, Neuhold C, Diewald W, Ogorevc B (1995) Electrocatalytic reduction of hydrogen peroxide on a palladium modified carbon paste electrode. Electroanalysis 7:340–345CrossRefGoogle Scholar
  26. 26.
    Kurowska E, Brzózka A, Jarosz M, Sulka GD, Jaskuła M (2013) Silver nanowire array sensor for sensitive and rapid detection of H2O2. Electrochim Acta 104:439–447CrossRefGoogle Scholar
  27. 27.
    Littauer EL, Tsai KC (1979) Observations of the diffusion coefficient of the perhydroxyl ion (OH2 ) in lithium hydroxide solutions. Electrochim Acta 24:681–684CrossRefGoogle Scholar
  28. 28.
    Mirčeski V, Komorsky-Lovric Š, Lovrić M (2007) In: Scholz F (ed) Square-wave voltammetry: theory and application. Springer Verlag, HeidelbergGoogle Scholar
  29. 29.
    Mirceski V, Laborda E, Guziejewski D, Compton RG (2013) New approach to electrode kinetic measurements in square-wave voltammetry: amplitude-based quasireversible maximum. Anal Chem 85:5586–5594CrossRefGoogle Scholar
  30. 30.
    Guziejewski D, Mirceski V, Jadresko D (2015) Measuring the electrode kinetics of surface confined electrode reactions at a constant scan rate. Electroanalysis 27:67–73CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Marjan S. Randjelović
    • 1
  • Milan Z. Momčilović
    • 2
    Email author
  • Dirk Enke
    • 3
  • Valentin Mirčeski
    • 4
    • 5
  1. 1.Faculty of Sciences and Mathematics, Department of ChemistryUniversity of NišNišSerbia
  2. 2.“Vinča” Institute of Nuclear SciencesUniversity of BelgradeBelgradeSerbia
  3. 3.Institute of Chemical TechnologyUniversity of LeipzigLeipzigGermany
  4. 4.Institute of Chemistry, Faculty of Natural Sciences and Mathematics“Ss Cyril and Methodius” UniversitySkopjeRepublic of Macedonia
  5. 5.Department of Inorganic and Analytical Chemistry, Faculty of ChemistryUniversity of LodzLodzPoland

Personalised recommendations