Journal of Solid State Electrochemistry

, Volume 23, Issue 4, pp 1279–1287 | Cite as

EIS analysis of electrode kinetics for La2NiO4 + δ cathode in contact with Ce0.8Sm0.2O1.9 electrolyte: from DRT analysis to physical model of the electrochemical process

  • E. P. AntonovaEmail author
  • A. V. Khodimchuk
  • G. R. Usov
  • E. S. Tropin
  • A. S. Farlenkov
  • A. V. Khrustov
  • M. V. Ananyev
Original Paper


The oxygen reduction kinetics on an La2NiO4 + δ electrode for electrodes of different thicknesses was investigated by means of electrochemical impedance spectroscopy. Dependences of the polarisation resistance in the temperature range from 700 to 800 °C, and oxygen pressure range of 0.2–16 kPa were obtained. It was established that three relaxation processes determined the overall polarisation resistance. Probable electrode reaction stages were suggested: oxygen ion diffusion on the electrode/electrolyte interface, charge transfer in the adsorption layer, oxygen surface exchange, and diffusion in La2NiO4 + δ. The influence of the electrode thickness on the electrochemical performance of La2NiO4 + δ electrodes was shown. The correlations between the electrochemical data and isotope exchange data are discussed.


Electrode kinetics Lanthanum nickelate Polarisation resistance DRT analysis 



The study was financially supported by the Russian Science Foundation, project no. 17-73-10196. The facilities of shared access centre “Composition of Compounds” of IHTE UB RAS were used. The education activity of Ph.D. and master students involved into this work is supported by Act 211 of the Government of the Russian Federation, agreement no. 02 A03.21.0006.


  1. 1.
    Skinner SJ, Kilner JA (2000) Oxygen diffusion and surface exchange in La2−xSrxNiO4+δ. Solid State Ionics 135(1-4):709–712CrossRefGoogle Scholar
  2. 2.
    Tsipis EV, Kharton VV (2011) Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. III. Recent trends and selected methodological aspects. J Solid State Electrochem 15(5):1007–1040CrossRefGoogle Scholar
  3. 3.
    Lee Y, Kim H (2015) Electrochemical performance of La2NiO4+δ cathode for intermediate-temperature solid oxide fuel cells. Ceram Int 41(4):5984–5991CrossRefGoogle Scholar
  4. 4.
    Benamira M, Ringuedé A, Cassir M, Horwat D, Lenormand P, Ansart F, Bassat JM, Viricelle JP (2018) Enhancing oxygen reduction reaction of YSZ/La2NiO4+δ using an ultrathin La2NiO4+δ interfacial layer. J Alloys Compd 746:413–420CrossRefGoogle Scholar
  5. 5.
    Zhao K, Xu Q, Huang DP, Chen M, Kim BH (2012) Microstructure and electrochemical properties of porous La2NiO4+δ electrodes spin-coated on Ce0.8Sm0.2O1.9 electrolyte. Ionics 18(1-2):75–83CrossRefGoogle Scholar
  6. 6.
    Kim GT, Wang S, Jacobson AJ, Yuan Z, Chen C (2007) Impedance studies of dense polycrystalline thin films of La2NiO4+δ. J Mater Chem 17(13):1316–1320CrossRefGoogle Scholar
  7. 7.
    Zhao K, Wang YP, Chen M, Xu Q, Kim BH, Huang DP (2014) Electrochemical evaluation of La2NiO4+δ as a cathode material for intermediate temperature solid oxide fuel cells. Int J Hydrog Energy 39(13):7120–7130CrossRefGoogle Scholar
  8. 8.
    Tong X, Zhou F, Yang S, Zhong S, Wei M, Liu Y (2017) Performance and stability of Ruddlesden-Popper La2NiO4+δ oxygen electrodes under solid oxide electrolysis cell operation conditions. Ceram Int 43(14):10927–10933CrossRefGoogle Scholar
  9. 9.
    Sayers R, Rieu M, Lenormand P, Ansart F, Kilner JA, Skinner SJ (2011) Development of lanthanum nickelate as a cathode for use in intermediate temperature solid oxide fuel cells. Solid State Ionics 192(1):531–534CrossRefGoogle Scholar
  10. 10.
    Guan B, Li W, Zhang H, Liu X (2015) Oxygen reduction reaction kinetics in Sr-doped La2NiO4+δ Ruddlesden-Popper phase as cathode for solid oxide fuel cells. J Electrochem Soc 162(7):F707–F712CrossRefGoogle Scholar
  11. 11.
    Hildenbrand N, Nammensma P, Blank DHA, Bouwmeester HJM, Boukamp BA (2013) Influence of configuration and microstructure on performance of La2NiO4+δ intermediate-temperature solid oxide fuel cells cathodes. J Power Sources 238:442–453CrossRefGoogle Scholar
  12. 12.
    Gavrilyuk AL, Osinkin DA, Bronin DI (2017) The use of Tikhonov regularization method for calculating the distribution function of relaxation times in impedance spectroscopy. Russ J Electrochem 53(6):575–588CrossRefGoogle Scholar
  13. 13.
    Porotnikova NM, Ananyev MV, Eremin VA, Medvedev DA, Farlenkov AS, Pankratov AA, Plaksin SV, Kurumchin EK (2014) Oxygen isotope exchange in the LSM–YSZ composite under the conditions of long-term tests. Russ J Electrochem 50(7):680–689CrossRefGoogle Scholar
  14. 14.
    Ananyev MV, Bronin DI, Osinkin DA, Eremin VA, Steinberger-Wilckens R, de Haart LGJ, Mertens J (2015) Characterization of Ni-cermet degradation phenomena I. Long term resistivity monitoring, image processing and X-ray fluorescence analysis. J Power Sources 286:414–426CrossRefGoogle Scholar
  15. 15.
    Ananyev MV, Tropin ES, Eremin VA, Farlenkov AS, Smirnov AS, Kolchugin AA, Porotnikova NM, Khodimchuk AV, Berenov AV, Kurumchin EK (2016) Oxygen isotope exchange in La2NiO4±δ. Phys Chem Chem Phys 18(13):9102–9111CrossRefGoogle Scholar
  16. 16.
    Wang YP, Zhao K, Xu Q, Huang DP, Chen M, Kim BH (2018) Optimization on the electrochemical properties of La2NiO4+δ cathodes by tuning the cathode thickness. Int J Hydrog Energy 43(9):4482–4491CrossRefGoogle Scholar
  17. 17.
    Fleig J, Merkle R, Maier J (2007) The p(O2) dependence of oxygen surface coverage and exchange current density of mixed conducting oxide electrodes: model considerations. Phys Chem Chem Phys 9(21):2713–2723CrossRefGoogle Scholar
  18. 18.
    Adler SB, Lane JA, Steele BC (1996) Electrode kinetics of porous mixed-conducting oxygen electrodes. J Electrochem Soc 143(11):3554–3564CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of High Temperature Electrochemistry UB RASYekaterinburgRussia
  2. 2.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations