Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 4, pp 1061–1081 | Cite as

Advanced carbon electrode for electrochemical capacitors

  • Yuya Kado
  • Yasushi SonedaEmail author
  • Hiroaki Hatori
  • Masaya Kodama
Review Paper
  • 456 Downloads

Abstract

Electrochemical capacitors are high-power energy storage devices having long cycle durability in comparison to secondary batteries. The energy storage mechanisms can be electric double-layer capacitance (ion adsorption) or pseudocapacitance (fast redox reaction) at the electrode-electrolyte interface. Most commonly used electrode materials are carbon materials with high specific surface area, microporous-activated carbons. A considerable number of studies have been conducted to optimize the pore structure and surface functionalities of activated carbons. In addition to conventional activated carbons, other types of carbon materials such as carbon aerogel/xerogel, templated carbons, carbide-derived carbons, carbon nanotubes, and graphene-based materials have been investigated. This review highlights the key features of advanced carbon materials for application to commercial capacitor devices.

Keywords

Electrochemical capacitors Electrode materials Advanced carbons Pseudocapacitances 

Notes

Acknowledgements

This work was supported by the NEDO (New Energy and Industrial Technology Development Organization) Energy Innovation Program “Development of the carbon nanotube capacitor” (FY 2006–2010), and the NEDO R&D program for the Practical Utilization of Nanotechnology and Advanced Materials “Development of the aqueous electrochemical supercapacitor by hybrid nanocarbon electrode” (FY 2008–2011). We are grateful to the people who engaged in this joint research between Oita University, Toyo Tanso Co., Ltd., NEC Tokin Corporation and the Nippon Chemi-Con Corporation.

References

  1. 1.
    International Energy Agency (2018) World energy outlook 2017. OECD/IEA, ParisGoogle Scholar
  2. 2.
    Miller JR, Simon P (2008) Science 321(5889):651–652CrossRefPubMedGoogle Scholar
  3. 3.
    Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum Publisher, New YorkCrossRefGoogle Scholar
  4. 4.
    Kötz R, Carlen M (2000) Electrochim Acta 45(15-16):2483–2498CrossRefGoogle Scholar
  5. 5.
    Miller JR (2016) J Power Sources 326:726–735CrossRefGoogle Scholar
  6. 6.
    Inagaki M, Konno H, Tanaike O (2010) J Power Sources 195(24):7880–7903CrossRefGoogle Scholar
  7. 7.
    Frackowiak E, Béguin F (2001) Carbon 39(6):937–950CrossRefGoogle Scholar
  8. 8.
    Gryglewicz G, Machnikowski J, Grabowska E, Lota G, Frackowiak E (2005) Electrochim Acta 50(5):1197–1206CrossRefGoogle Scholar
  9. 9.
    Raymundo-Piñero E, Kierzek K, Machnikowski J, Beguin F (2006) Carbon 44(12):2498–2507CrossRefGoogle Scholar
  10. 10.
    Shiraishi S (2013) Bol Grupo Español Carbón 28:18–24Google Scholar
  11. 11.
    Fuertes AB, Lota G, Centeno TA, Frackowiak E (2005) Electrochim Acta 50(14):2799–2805CrossRefGoogle Scholar
  12. 12.
    Nishihara H, Itoi H, Kogure T, Hou P-X, Touhara H, Okino F, Kyotani T (2009) Chem Eur J 15(21):5355–5363CrossRefPubMedGoogle Scholar
  13. 13.
    Soneda Y, Kodama M (2013) Electrochemistry 81(10):845–848CrossRefGoogle Scholar
  14. 14.
    Fang B, Wei YZ, Maruyama K, Kumagai M (2005) J Appl Electrochem 35(3):229–233CrossRefGoogle Scholar
  15. 15.
    Lin C, Ritter JA, Popov BN (1999) J Electrochem Soc 146(10):3639–3643CrossRefGoogle Scholar
  16. 16.
    Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Science 313(5794):1760–1763CrossRefPubMedGoogle Scholar
  17. 17.
    Kado Y, Imoto K, Soneda Y, Yoshizawa N, Horii D, Suematsu S (2016) J Electrochem Soc 163(8):A1753–A1758CrossRefGoogle Scholar
  18. 18.
    Yamada Y, Kimizuka O, Tanaike O, Machida K, Suematsu S, Tamamitsu K, Saeki S, Hatori H (2009) Electrochem Solid-State Lett 12(3):K14–K16CrossRefGoogle Scholar
  19. 19.
    Raymundo-Piñero E, Leroux F, Béguin F (2006) Adv Mater 18(14):1877–1882CrossRefGoogle Scholar
  20. 20.
    Kodama M, Yamashita J, Soneda Y, Hatori H, Nishimura S, Kamegawa K (2004) Mater Sci Eng B 108(1-2):156–161CrossRefGoogle Scholar
  21. 21.
    Kodama M, Yamashita J, Soneda Y, Hatori H, Kamegawa K (2007) Carbon 45(5):1105–1107CrossRefGoogle Scholar
  22. 22.
    Wang D-W, Li F, Chen Z^G, Lu GQ, Cheng H-M (2008) Chem Mater 20(22):7195–7200CrossRefGoogle Scholar
  23. 23.
    Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Nano Lett 8(10):3498–3502CrossRefPubMedGoogle Scholar
  24. 24.
    Soneda Y, Toyoda M, Tani Y, Yamashita J, Kodama M, Hatori H, Inagaki M (2004) J Phys Chem Solids 65(2-3):219–222CrossRefGoogle Scholar
  25. 25.
    Simon P, Gogotsi Y (2008) Nat Mater 7(11):845–854CrossRefPubMedGoogle Scholar
  26. 26.
    Béguin F, Presser V, Balducci A, Frackowiak E (2014) Adv Mater 26(14):2219–2251CrossRefPubMedGoogle Scholar
  27. 27.
    Wang L, Toyoda M, Inagaki M (2008) New Carbon Mater 23(2):111–115CrossRefGoogle Scholar
  28. 28.
    Salitra G, Soffer A, Eliad L, Cohen Y, Aurbach D (2000) J Electrochem Soc 147(7):2486–2493CrossRefGoogle Scholar
  29. 29.
    Largeot C, Portet C, Chmiola J, Taberna PL, Gogotsi Y, Simon P (2008) J Am Chem Soc 130(9):2730–2731CrossRefPubMedGoogle Scholar
  30. 30.
    Persons R (1990) Chem Rev 90(5):813–826CrossRefGoogle Scholar
  31. 31.
    Pandolfo AG, Hollenkamp AH (2006) J Power Sources 157(1):11–27CrossRefGoogle Scholar
  32. 32.
    Xie Y, Kocaefe D, Chen C, Kocaefe Y (2016) J Nanomater 2016:2302595CrossRefGoogle Scholar
  33. 33.
    Inagaki M, Toyoda M, Soneda Y, Tsujimura S, Morishita T (2016) Carbon 107:448–473CrossRefGoogle Scholar
  34. 34.
    Yoon SH, Lee J, Hyeon T, Oh SM (2002) J Electrochem Soc 147:2507–2512CrossRefGoogle Scholar
  35. 35.
    Nishihara H, Kyotani T (2012) Adv Mater 24(33):4473–4498CrossRefPubMedGoogle Scholar
  36. 36.
    Morishita T, Tsumura T, Toyoda M, Przepiórski J, Morawski AW, Konno H, Inagaki M (2010) Carbon 48(10):2690–2707CrossRefGoogle Scholar
  37. 37.
    Niu CM, Sichel EK, Hoch R, Moy D, Tennent H (1997) Appl Phys Lett 70(11):1480–1482CrossRefGoogle Scholar
  38. 38.
    Frackowiak E, Metenier K, Bertagna V, Beguin F (2000) Appl Phys Lett 77(15):2421–2423CrossRefGoogle Scholar
  39. 39.
    Barisci JN, Wallace GG, Baughman RH (2000) J Electrochem Soc 147(12):4580–4583CrossRefGoogle Scholar
  40. 40.
    An KH, Kim WS, Park YS, Choi YC, Lee SM, Chung DC, Bae DJ, Lim SC, Lee YH (2001) Adv Mater 13(7):497–500CrossRefGoogle Scholar
  41. 41.
    Lota G, Fic K, Frackowiak E (2011) Energy Environ Sci 4(5):1592–1605CrossRefGoogle Scholar
  42. 42.
    Chen T, Dai LM (2013) Mater Today 16(7-8):272–280CrossRefGoogle Scholar
  43. 43.
    Miller JR, Outlaw RA, Hollowa BC (2010) Science 329(5999):1637–1639CrossRefPubMedGoogle Scholar
  44. 44.
    Vivekchand SRC, Rout CS, Subrahmanyam KS, Govindaraj A, Rao CNR (2008) J Chem Sci 120(1):9–13CrossRefGoogle Scholar
  45. 45.
    Huang Y, Liang J, Chen Y (2012) Small 8(12):1805–1834CrossRefPubMedGoogle Scholar
  46. 46.
    Lemine AS, Zagho MM, Altahtamouni TM, Bensalah N (2018) Int J Energy Res 42(14):4284–4300.  https://doi.org/10.1002/er.4170 CrossRefGoogle Scholar
  47. 47.
    Chen J, Li C, Shi G (2013) J Phys Chem Lett 4(8):1244–1253CrossRefPubMedGoogle Scholar
  48. 48.
    Raccichini R, Varzi A, Passerini S, Scrosati B (2015) Nat Mater 14(3):271–279CrossRefPubMedGoogle Scholar
  49. 49.
    NEDO Carbon Nanotube Capacitor Development Project (2011) Evaluation report http://www.nedo.go.jp/content/100433173.pdf. Accessed 1 Oct 2018
  50. 50.
    Naoi K, Simon P (2008) Electrochem Soc Interface 17:34–37Google Scholar
  51. 51.
    Conway BE (1991) J Electrochem Soc 138(6):1539–1548CrossRefGoogle Scholar
  52. 52.
    Conway BE, Birss V, Wojtowicz J (1997) J Power Sources 66(1-2):1–14CrossRefGoogle Scholar
  53. 53.
    Oda H, Yamashita A, Minoura S, Okamoto M, Morimoto T (2006) J Power Sources 158(2):1510–1516CrossRefGoogle Scholar
  54. 54.
    Hsieh C, Teng H (2002) Carbon 40(5):667–674CrossRefGoogle Scholar
  55. 55.
    Frackowiak E, Lota G, Machnikowski J, Guterl CV, Béguin F (2006) Electrochim Acta 51(11):2209–2214CrossRefGoogle Scholar
  56. 56.
    Inagaki M, Toyoda M, Soneda Y, Morishita T (2018) Carbon 132:104–140CrossRefGoogle Scholar
  57. 57.
    Lota G, Grzyb B, Machnikowska H, Machnikowski J, Frackowiak E (2005) Chem Phys Lett 404(1-3):53–58CrossRefGoogle Scholar
  58. 58.
    Hulicova-Jurcakova D, Seredych M, Lu GQ, Bandosz TJ (2009) Adv Funct Mat 19(3):438–447CrossRefGoogle Scholar
  59. 59.
    Sahoo MK, Gogoi P, Rajeshkhanna G, Chilukuri SV, Rao GR (2017) Appl Surf Sci 418:40–48CrossRefGoogle Scholar
  60. 60.
    Ryu KS, Kim KM, Park NG, Park YJ, Chang SH (2002) J Power Sources 103(2):305–309CrossRefGoogle Scholar
  61. 61.
    Rudge A, Davey J, Raistrick I, Gottesfeld S, Ferrais JP (1994) J Power Sources 47(1-2):89–107CrossRefGoogle Scholar
  62. 62.
    Laforgue A, Simon P, Sarrazin C, Fauvarque JF (1999) J Power Sources 80(1-2):142–148CrossRefGoogle Scholar
  63. 63.
    Toupin M, Brousse T, Bélanger D (2004) Chem Mater 16(16):3184–3190CrossRefGoogle Scholar
  64. 64.
    Liu KC, Anderson MA (1996) J Electrochem Soc 143(1):124–130CrossRefGoogle Scholar
  65. 65.
    Zheng JP, Cygan PJ, Jow TR (1995) J Electrochem Soc 142(8):2699–2703CrossRefGoogle Scholar
  66. 66.
    Meher SK, Rao GR (2011) J Phys Chem C 115(31):15646–15654CrossRefGoogle Scholar
  67. 67.
    Naoi K, Naoi W, Aoyagi S, Miyamoto J, Kamino T (2013) Acc Chem Res 46(5):1075–1083CrossRefPubMedGoogle Scholar
  68. 68.
    Fisher RA, Watt MR, Readya WJ (2013) ECS J Solid State Sci Technol 2(10):M3170–M3177CrossRefGoogle Scholar
  69. 69.
    Kyotani T, Tsai LF, Tomita A (1995) Chem Mater 7(8):1427–1428CrossRefGoogle Scholar
  70. 70.
    Ahn HJ, Sohn JI, Kim YS, Shim HS, Kim WB (2006) Electrochem Commun 8(4):513–516CrossRefGoogle Scholar
  71. 71.
    Vix-Guterl C, Frackowiak E, Jurewicz K, Friebe M, Parmentier J, Beguin F (2005) Carbon 43(6):1293–1302CrossRefGoogle Scholar
  72. 72.
    Li L, Song H, Chen X (2006) Electrochim Acta 51(26):5715–5720CrossRefGoogle Scholar
  73. 73.
    Liu HY, Wang KP, Teng H (2005) Carbon 43(3):559–566CrossRefGoogle Scholar
  74. 74.
    Nishihara H, Yang QH, Hou PX, Unno M, Yamauchi S, Saito R, Paredes JI, Martinez-Alonso A, Tascon JMD, Sato Y, Terauchi M, Kyotani T (2009) Carbon 47(5):1220–1230CrossRefGoogle Scholar
  75. 75.
    Moriguchi I, Nakahara F, Furukawa H, Yamada H, Kudo T (2004) Electrochem Solid-State Lett 7(8):A221–A223CrossRefGoogle Scholar
  76. 76.
    Morishita T, Ishihara K, Kato M, Inagaki M (2007) Carbon 45(1):209–211CrossRefGoogle Scholar
  77. 77.
    Inagaki M, Kato M, Morishita T, Morita K, Mizuuchi K (2007) Carbon 45(5):1121–1124CrossRefGoogle Scholar
  78. 78.
    Nakazono T, Morishita T (2016) KONA Powder Particle J 33(0):333–339CrossRefGoogle Scholar
  79. 79.
    Morishita T, Ishihara K, Kato M, Tsumura T, Inagaki M (2007) TANSO 2007(226):19–24CrossRefGoogle Scholar
  80. 80.
    Kado Y, Imoto K, Soneda Y, Yoshizawa N (2014) J Power Sources 271:377–381CrossRefGoogle Scholar
  81. 81.
    Kado Y, Soneda Y, Yoshizawa N (2015) J Power Sources 276:176–180CrossRefGoogle Scholar
  82. 82.
    Kado Y, Imoto K, Soneda Y, Yoshizawa N (2016) J Power Sources 305:128–133CrossRefGoogle Scholar
  83. 83.
    Kado Y, Soneda Y (2017) TANSO 280:182–187CrossRefGoogle Scholar
  84. 84.
    Mitani S, Lee SI, Yoon SH, Korai Y, Mochida I (2004) J Power Sources 133(2):298–301CrossRefGoogle Scholar
  85. 85.
    Mitani S, Lee SI, Saito K, Korai Y, Mochida I (2006) Electrochim Acta 51(25):5487–5493CrossRefGoogle Scholar
  86. 86.
    Sevilla M, Álvarez S, Centeno T, Fuertes A, Stoeckli F (2007) Electrochim Acta 52(9):3207–3215CrossRefGoogle Scholar
  87. 87.
    Centeno TA, Stoeckli F (2006) Electrochim Acta 52(2):560–566CrossRefGoogle Scholar
  88. 88.
    Ishimoto S, Asakawa Y, Shinya M, Naoi K (2009) J Electrochem Soc 156(7):A563–A571CrossRefGoogle Scholar
  89. 89.
    Ruch PW, Cericola D, Foelske A, Kötz R, Wakaun A (2010) Electrochim Acta 55(7):2352–2357CrossRefGoogle Scholar
  90. 90.
    Shiraishi S (2012) Key Eng Mater 497:80–86CrossRefGoogle Scholar
  91. 91.
    Muroi S, Iida D, Tsuchikawa T, Yabuuchi N, Horikoshi R, Hosono N, Komatsu D, Komaba S (2015) Electrochemistry 83(8):609–618CrossRefGoogle Scholar
  92. 92.
    Tokita M, Yoshimoto N, Fujii K, Morita M (2016) Electrochim Acta 209:210–218CrossRefGoogle Scholar
  93. 93.
    Frackowiak E, Béguin F (2002) Carbon 40(10):1775–1787CrossRefGoogle Scholar
  94. 94.
    Kado Y, Soneda Y, Yoshizawa N (2015) ECS Electrochem Lett 4:A22–A23CrossRefGoogle Scholar
  95. 95.
    Kado Y, Soneda Y, Yoshizawa N (2015) J Appl Electrochem 45(3):273–280CrossRefGoogle Scholar
  96. 96.
    Kado Y, Soneda Y (2016) J Phys Chem Solids 99:167–172CrossRefGoogle Scholar
  97. 97.
    Cazorla-Amorós D, Lozano-Castelló D, Morallón E, Bleda-Marínez MJ, Linares-Solano A, Shiraishi S (2010) Carbon 48(5):1451–1456CrossRefGoogle Scholar
  98. 98.
    Wang J, Polleux J, Lim J, Dunn B (2007) J Phys Chem C 111(40):14925–14931CrossRefGoogle Scholar
  99. 99.
    Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Nat Mater 9(2):146–151CrossRefPubMedGoogle Scholar
  100. 100.
    Brezesinski K, Haetge J, Wang J, Mascotto S, Reitz C, Rein S, Tolbert SH, Perlich J, Dunn B, Brezesinski T (2011) Small 7(3):407–414CrossRefPubMedGoogle Scholar
  101. 101.
    Karthikeyan K, Amaresh S, Lee SN, Aravindan V, Lee YS (2014) Chem Asian J 9(3):852–857CrossRefPubMedGoogle Scholar
  102. 102.
    Frackowiak E, Gautier S, Gaucher H, Bonnamy S, Béguin F (1999) Carbon 37(1):61–69CrossRefGoogle Scholar
  103. 103.
    Nishi Y (2001) J Power Sources 100(1-2):101–106CrossRefGoogle Scholar
  104. 104.
    Tarascon JM, Armand M (2001) Nature 414(6861):359–367CrossRefPubMedGoogle Scholar
  105. 105.
    Armand M, Tarascon JM (2008) Nature 451(7179):652–657CrossRefPubMedGoogle Scholar
  106. 106.
    Palacin MR (2009) Chem Soc Rev 38(9):2565–2575CrossRefPubMedGoogle Scholar
  107. 107.
    Kim SW, Seo DH, Ma X, Ceder G, Kang K (2012) Adv Energy Mater 2(7):710–721CrossRefGoogle Scholar
  108. 108.
    Slater MD, Kim D, Lee E, Johnson CS (2013) Adv Funct Mater 23(8):947–958CrossRefGoogle Scholar
  109. 109.
    Clarke FW, Washington HS (1922) Proc Natl Acad Sci U S A 8(5):108–115CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Stevens DA, Dahn JR (2000) J Electrochem Soc 147(4):1271–1273CrossRefGoogle Scholar
  111. 111.
    Alcántara R, Lavela P, Ortiz JF, Tirado JL (2005) Electrochem Solid-State Lett 8(4):A222–A225CrossRefGoogle Scholar
  112. 112.
    Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K (2011) Adv Funct Mater 21(20):3859–3867CrossRefGoogle Scholar
  113. 113.
    Wenzel A, Hara T, Janek J, Adelhelm P (2011) Energy Environ Sci 4(9):3342–3345CrossRefGoogle Scholar
  114. 114.
    Tang K, Fu L, White RJ, Yu L, Titirici M-M, Antonietti M, Maier J (2012) Adv Energy Mater 2(7):873–877CrossRefGoogle Scholar
  115. 115.
    Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J (2012) Nano Lett 12(7):3783–3787CrossRefPubMedGoogle Scholar
  116. 116.
    Kuratani K, Yao M, Senoh H, Takeichi N, Sakai T, Kiyobayashi T (2012) Electrochim Acta 76:320–325CrossRefGoogle Scholar
  117. 117.
    Shao Y, Xiao J, Wang W, Engelhard M, Chen X, Nie Z, Gu M, Saraf LV, Exarhos G, Zhang J-G, Liu J (2013) Nano Lett 13(8):3909–3914CrossRefPubMedGoogle Scholar
  118. 118.
    Lotfabad EM, Kalisvaart P, Kohandehghan A, Karpuzov D, Mitlin D (2014) J Mater Chem A 2(46):19685–19695CrossRefGoogle Scholar
  119. 119.
    Han P, Han X, Yao J, Zhang L, Cao X, Huang C, Cui G (2015) J Power Sources 297:457–463CrossRefGoogle Scholar
  120. 120.
    Guan Z, Liu H, Xu B, Hao X, Wang Z, Chen L (2015) J Mater Chem A 3(15):7849–7854CrossRefGoogle Scholar
  121. 121.
    Liu H, Jia M, Sun N, Cao B, Chen R, Zhu Q, Wu F, Qiao N, Xu B (2015) ACS Appl Mater Interfaces 7(49):27124–27130CrossRefPubMedGoogle Scholar
  122. 122.
    Hasegawa G, Kanamori K, Kannari N, Ozaki J, Nakanishi K, Abe T (2016) J Power Sources 318:41–48CrossRefGoogle Scholar
  123. 123.
    Iijima S (1991) Nature 345:56–58CrossRefGoogle Scholar
  124. 124.
    Hatori H, Tanaike O, Soneda Y, Kodama M (2014) Synthesiology 6:222–231CrossRefGoogle Scholar
  125. 125.
    Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S (2004) Science 306(5700):1362–1364CrossRefGoogle Scholar
  126. 126.
    Kimizuka O, Tanaike O, Yamashita J, Hiraoka T, Futaba DN, Hata K, Machida K, Suematsu S, Tamamitsu K, Saeki S, Yamada Y, Hatori H (2008) Carbon 46(14):1999–2001CrossRefGoogle Scholar
  127. 127.
    Tanaike O, Futaba DN, Hata K, Hatori H (2009) Carbon Lett 10(2):90–93CrossRefGoogle Scholar
  128. 128.
    Tanaike O, Hatori H, Hata K (2011), a) JP PAT 4706066, 2011, b) US PAT 8072733, 2011Google Scholar
  129. 129.
    Yamada Y, Tanaka T, Machida K, Suematsu S, Tamamitsu K, Kataura H, Hatori H (2012) Carbon 50(3):1422–1424CrossRefGoogle Scholar
  130. 130.
    Tanaike O, Kimizuka O, Yoshizawa N, Yamada K, Wang XQ, Hatori H, Toyoda M (2009) Electrochem Commun 11(7):1441–1444CrossRefGoogle Scholar
  131. 131.
    Hiraoka T, Izadi-Najafabadi A, Yamada T, Futaba DN, Yasuda S, Tanaike O, Hatori H, Yumura M, Iijima S, Hata K (2010) Adv Funct Mater 20(3):422–428CrossRefGoogle Scholar
  132. 132.
    Yamada Y, Kimizuka O, Machida K, Suematsu S, Tamamitsu K, Saeki S, Yoshizawa N, Tanaike O, Yamashita J, Don F, Hata K, Hatori H (2010) Energy Fuel 24(6):3373–3377CrossRefGoogle Scholar
  133. 133.
    Izadi-Najafabadi A, Yamada T, Futaba DN, Hatori H, Iijima S, Hata K (2010) Electrochem Commun 12(12):1678–1681CrossRefGoogle Scholar
  134. 134.
    Izadi-Najafabadi A, Yasuda S, Kobashi K, Yamada T, Futaba DN, Hatori H, Yumura M, Iijima S, Hata K (2010) Adv Mater 22(35):E235–E241CrossRefPubMedGoogle Scholar
  135. 135.
    Shiraishi S, Kurihara H, Okabe K, Hulicova D, Oya A (2002) Electrochem Commun 4(7):593–598CrossRefGoogle Scholar
  136. 136.
    Al-zubaidi A, Inoue T, Matsushita T, Ishii Y, Hashimoto T, Kawasaki S (2012) J Phys Chem C 116(14):7681–7686CrossRefGoogle Scholar
  137. 137.
    Heller I, Kong J, Williams KA, Dekker C, Lemay SG (2006) J Am Chem Soc 128(22):7353–7359CrossRefPubMedGoogle Scholar
  138. 138.
    Ruch PW, Hardwick LJ, Hahn M, Foelske A, Koetz R, Wokaun A (2009) Carbon 47(1):38–52CrossRefGoogle Scholar
  139. 139.
    Ruch PW, Kótz R, Wokaun A (2009) Electrochim Acta 54(19):4451–4458CrossRefGoogle Scholar
  140. 140.
    Honda Y, Takeshige M, Shiozaki H, Kitamura T, Yoshikawa K, Chakrabarti S, Suekane O, Pan L, Nakayama Y, Yamagata M, Ishikawa M (2008) J Power Sources 185(2):1580–1584CrossRefGoogle Scholar
  141. 141.
    Jang IY, Muramatsu H, Park KC, Kim YJ, Endo M (2009) Electrochem Commun 11(4):719–723CrossRefGoogle Scholar
  142. 142.
    Kim YJ, Kim YA, Chino T, Suezaki H, Endo M, Dresselhaus MS (2006) Small 2(3):339–345CrossRefPubMedGoogle Scholar
  143. 143.
    Xu G, Zheng C, Zhang Q, Huang J, Zhao M, Nie J, Wang X, Wei F (2011) Nano Res 4(9):870–881CrossRefGoogle Scholar
  144. 144.
    Ghosh A, Lee YH (2012) ChemSusChem 5(3):480–499CrossRefPubMedGoogle Scholar
  145. 145.
    Zhang JT, Zhao XS (2012) ChemSusChem 5(5):818–841CrossRefPubMedGoogle Scholar
  146. 146.
    Chen H, Di J, Jin Y, Chen M, Tian J, Li Q (2013) J Power Sources 237:325–331CrossRefGoogle Scholar
  147. 147.
    Yan J, Wang Q, Wei T, Fan ZJ (2014) Adv Energy Mater 4(4):1300816CrossRefGoogle Scholar
  148. 148.
    Mai LQ, Tian XC, Xu X, Chang L, Xu L (2014) Chem Rev 114(23):11828–11862CrossRefPubMedGoogle Scholar
  149. 149.
    Vlad A, Singh N, Galande C, Ajayan PM (2015) Adv Energy Mater 5(19):1402115CrossRefGoogle Scholar
  150. 150.
    Yang ZB, Ren J, Zhang ZT, Chen XL, Guan GZ, Qin LB, Zhang Y, Peng HS (2015) Chem Rev 115(11):5159–5223CrossRefPubMedGoogle Scholar
  151. 151.
    Liu LL, Niu ZQ, Chen J (2016) Chem Soc Rev 45(15):4340–4363CrossRefPubMedGoogle Scholar
  152. 152.
    Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S (2006) Nature Mater 5(12):987–994CrossRefGoogle Scholar
  153. 153.
    Laszczyk KU, Kobashi K, Sakurai S, Sekiguchi A, Futaba DN, Yamada T, Hata K (2015) Adv Energy Mater 5(18):1500741CrossRefGoogle Scholar
  154. 154.
    Taberna P-L, Chevallier G, Simon P, Plée D, Aubert T (2006) Mater Res Bull 41(3):478–484CrossRefGoogle Scholar
  155. 155.
    Show Y, Imaizumi K (2007) Diam Relat Mater 16(4-7):1154–1158CrossRefGoogle Scholar
  156. 156.
    Suematsu S, Machida K, Tamamitsu K (2008) JP PAT 5266844, 2013Google Scholar
  157. 157.
    Raymundo-Piñero E, Cadek M, Wachtler M, Béguin F (2011) ChemSusChem 4(7):943–949CrossRefPubMedGoogle Scholar
  158. 158.
    Smithyman J, Moench A, Liang R, Zheng JP, Wang B, Zhang C (2012) Appl Phys A Mater Sci Process 107(3):723–731CrossRefGoogle Scholar
  159. 159.
    Dolah BNM, Deraman M, Othman MAR, Farma R, Taer E, Awitdrus A, Basri NH, Talib IA, Omar R, Nor NSM (2014) Mater Res Bull 60:10–19CrossRefGoogle Scholar
  160. 160.
    Quintero R, Kim DY, Hasegawa K, Yamada Y, Yamada A, Noda S (2014) RSC Adv 4(16):8230–8237CrossRefGoogle Scholar
  161. 161.
    Quintero R, Kim DT, Hasegawa K, Yamada Y, Yamada A, Noda S (2015) RSC Adv 5(21):16101–16111CrossRefGoogle Scholar
  162. 162.
    Lu W, Hartman R, Qu L, Dai L (2011) J Phys Chem Lett 2(6):655–660CrossRefGoogle Scholar
  163. 163.
    Izadi-Najafabadi A, Yamada T, Futaba DN, Yudasaka M, Takagi H, Hatori H, Iijima S, Hata K (2011) ACS Nano 5(2):811–819CrossRefPubMedGoogle Scholar
  164. 164.
    Shiraishi S, Kibe M, Yokoyama T, Kurihara H, Patel N, Oya A, Kaburagi Y, Hishiyama Y (2006) Appl Phys A Mater Sci Process 82(4):585–591CrossRefGoogle Scholar
  165. 165.
    Gu WT, Sevilla M, Magasinski A, Fuertes AB, Yushin G (2013) Energy Environ Sci 6(8):2465–2476CrossRefGoogle Scholar
  166. 166.
    Fan XM, Yu C, Ling Z, Yang J, Qiu JS (2013) ACS Appl Mater Interfaces 5(6):2104–2110CrossRefPubMedGoogle Scholar
  167. 167.
    Hulicova D, Yamashita J, Soneda Y, Hatori H, Kodama M (2005) Chem Mater 17(5):1241–1247CrossRefGoogle Scholar
  168. 168.
    Hulicova D, Kodama M, Hatori H, Shiraishi S (2009) Adv Funct Mater 19(11):1800–1809CrossRefGoogle Scholar
  169. 169.
    Lee J, Yoon S, Hyeon T, Oh SM, Kim KB (1999) Chem Commun 21:2177–2178CrossRefGoogle Scholar
  170. 170.
    Kodama M, Yamashita J, Soneda Y, Hatori H, Kamegawa K, Moriguchi I (2006) Chem Lett 35(6):680–681CrossRefGoogle Scholar
  171. 171.
    Kodama M (2013) TANSO 258:171–178CrossRefGoogle Scholar
  172. 172.
    Hulicova D, Kodama M, Hatori H (2006) Chem Mater 18(9):2318–2326CrossRefGoogle Scholar
  173. 173.
    Soneda Y, Toyoda M, Hashiya K, Yamashita J, Kodama M, Hatori H, Inagaki M (2003) Carbon 41(13):2680–2682CrossRefGoogle Scholar
  174. 174.
    Toyoda M, Tani Y, Soneda Y (2004) Carbon 42(14):2833–2837CrossRefGoogle Scholar
  175. 175.
    Soneda Y, Yamashita J, Kodama M, Hatori H, Toyoda M, Inagaki M (2006) Appl Phys A Mater Sci Process 82(4):575–578CrossRefGoogle Scholar
  176. 176.
    Toyoda M, Shimizu A, Iwata H, Inagaki M (2001) Carbon 39(11):1697–1707CrossRefGoogle Scholar
  177. 177.
    Toyoda M, Katoh H, Inagaki M (2001) Carbon 39(14):2231–2234CrossRefGoogle Scholar
  178. 178.
    Toyoda M, Sedlacik J, Inagaki M (2002) Synth Met 130(1):39–43CrossRefGoogle Scholar
  179. 179.
    Huang Z-H, Zheng XY, Lv W, Wang M, Yang Q-H, Kang FY (2011) Langmuir 27(12):7558–7562CrossRefPubMedGoogle Scholar
  180. 180.
    Jang BZ, Liu C, Neff D, Yu Z, Wang MC, Xiong W, Zhamu A (2011) Nano Lett 11(9):3785–3791CrossRefPubMedGoogle Scholar
  181. 181.
    Yu JH, Xu LL, Zhu QQ, Wang XX, Yun MJ, Dong LF (2016) J Inorg Mat 31:220–224CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Energy Conversion Materials Group, Research Institute of Energy FrontierNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations