Advertisement

Understanding the electrochemical behavior of bulk-synthesized MgZn2 intermetallic compound in aqueous NaCl solutions as a function of pH

  • Alexander I. Ikeuba
  • Fujun Kou
  • Haowei Duan
  • Bo ZhangEmail author
  • Jianqiu Wang
  • En-Hou Han
  • Wei Ke
Original Paper

Abstract

The electrochemical behavior of a bulk-synthesized MgZn2 intermetallic compound in aerated 0.1 M NaCl solutions has been studied as a function of pH and applied potential using polarization techniques, electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), and focused ion beam-transmission electron microscopy (FIB-TEM). The anodic activity of MgZn2 is seen to decrease with an increase in pH value. Polarization tests reveal two limiting current densities in pH 4 solution at relatively high and low potentials. At pH 12, passivity is observed with a lower limiting current density compared to those observed at pH 4. The corrosion film formed after potentiostatic polarization in the pH 4 solution is composed of a bilayer at a less negative potential and a single layer at a more negative potential. In the case of pH 12 solution, a protective compact bilayer film is formed irrespective of the potential within the passive zone. Overall, the corrosion mechanism of MgZn2 is by early dissolution of Mg leading to a Zn-enriched surface whose subsequent dissolution depends on the value of the applied potential.

Keywords

MgZn2 Intermetallic compound Corrosion EIS XPS FIB-TEM 

Notes

Funding information

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51571201).

References

  1. 1.
    Andreatta F, Lohrengel MM, Terryn H, de Wit JHW (2003) Electrochim Acta 48(20–22):3239–3247Google Scholar
  2. 2.
    Birbilis N, Buchheit RG (2005) J Electrochem Soc 152(4):B140–B151Google Scholar
  3. 3.
    Birbilis N, Padgett BN, Buchheit RG (2005) Electrochim Acta 50(16-17):3536–3544Google Scholar
  4. 4.
    Ramgopal T, Gouma PI, Frankel GS (2002) Corrosion 58(8):687–697Google Scholar
  5. 5.
    Ramgopal T, Schmutz P, Frankel GS (2001) J Electrochem Soc 148(9):B348–B356Google Scholar
  6. 6.
    Yoon Y, Buchheit RG (2005) Electrochem Solid St Lett 8(11):B65–B68Google Scholar
  7. 7.
    Wloka J, Virtanen S (2008) Surf Interface Anal 40(8):1219–1225Google Scholar
  8. 8.
    Diler E, Lescop B, Rioual S, Vien GN, Thierry D, Rouvellou B (2014) Corros Sci 79:83–88Google Scholar
  9. 9.
    Diler E, Rioual S, Lescop B, Thierry D, Rouvellou B (2012) Corros Sci 65:178–186Google Scholar
  10. 10.
    Birbilis N, King AD, Thomas S, Frankel GS, Scully JR (2014) Electrochim Acta 132:227–283Google Scholar
  11. 11.
    Williams G, Birbilis N, McMurray HN (2013) Electrochem Commun 36:1–5Google Scholar
  12. 12.
    Alsagabi S, Ninlachart J, Raja KS, Charit I (2016) J Mater Eng Perform 25(6):2364–2374Google Scholar
  13. 13.
    Thomas S, Birbilis N, Venkatraman MS, Cole IS (2012) Corrosion 68:1–9Google Scholar
  14. 14.
    Moon S-M, Pyun S-I (1999) J Solid State Electrochem 3(2):104–110Google Scholar
  15. 15.
    Pyun S-I, Moon S-M (2000) J Solid State Electrochem 4(5):267–272Google Scholar
  16. 16.
    Birbilis N, Cavanaugh MK, Buchheit RG (2006) Corros Sci 48(12):4202–4215Google Scholar
  17. 17.
    Sun XY, Zhang B, Lin HQ, Zhou Y, Sun L, Wang JQ, Han EH, Ke W (2013) Corros Sci 77:103–112Google Scholar
  18. 18.
    Suter T, Alkire RC (2001) J Electrochem Soc 148(1):B36–B42Google Scholar
  19. 19.
    Diler E, Rouvellou B, Rioual S, Lescop B, Vien GN, Thierry D (2014) Corros Sci 87:111–117Google Scholar
  20. 20.
    Fujimoto S, Kim W-S, Sato M, Son J-Y, Machida M, Jung K-T, Tsuchiya H (2015) J Solid State Electrochem 19(12):3521–3531Google Scholar
  21. 21.
    Santamaria M, Di Franco F, Di Quarto F, Pisarek M, Zanna S, Marcus P (2015) J Solid State Electrochem 19(12):3511–3519Google Scholar
  22. 22.
    Ghods P, Isgor OB, Carpenter GJC, Li J, McRae GA, Gu GP (2013) Cement Concrete Res 47:55–68Google Scholar
  23. 23.
    Li J, Malis T, Dionne S (2006) Mater Charact 57(1):64–70Google Scholar
  24. 24.
    Yang J, Yim CD, You BS (2016) J Electrochem Soc 163(8):C395–C401Google Scholar
  25. 25.
    Yang J, Yim CD, You BS (2016) J Electrochem Soc 163(14):C839–C844Google Scholar
  26. 26.
    Ikeuba AI, Zhang B, Wang J, Han E-H, Ke W, Okafor PC (2018) J Electrochem Soc 165(3):C180–C194Google Scholar
  27. 27.
    Scendo M, Staszewska-Samson K (2017) Int J Electrochem Sci 12:5668–5691Google Scholar
  28. 28.
    Shang X-L, Zhang B, Han E-H, Ke W (2011) Electrochim Acta 56(3):1417–1425Google Scholar
  29. 29.
    Valandro LF, Neisser MP, Lopes AG, Scotti R, Andreatta OD, Bottino MA (2003) J Dent Res, vol 82, pp B344–B344Google Scholar
  30. 30.
    Kaesche H (2003) Corrosion of metals. Engineering Materials and Processes. Springer, New YorkGoogle Scholar
  31. 31.
    Wang L, Shinohara T, Zhang BP (2010) Appl Surf Sci 256(20):5807–5812Google Scholar
  32. 32.
    Zhang B, Zhou H-B, Han E-H, Ke W (2009) Electrochim Acta 54(26):6598–6608Google Scholar
  33. 33.
    Santamaria M, Di Quarto F, Zanna S, Marcus P (2007) Electrochim Acta 53(3):1314–1324Google Scholar
  34. 34.
    Yao HB, Li Y, Wee ATS (2000) Appl Surf Sci 158(1-2):112–119Google Scholar
  35. 35.
    Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications. Wiley, New YorkGoogle Scholar
  36. 36.
    Ismail KM, Wood TK, Earthman JC (1999) Electrochim Acta 44(26):4685–4692Google Scholar
  37. 37.
    Zheng ZJ, Gao Y, Gui Y, Zhu M (2014) J Solid State Electrochem 18(8):2201–2210Google Scholar
  38. 38.
    Heakal FE-T, Fatayerji MZ (2010) J Solid State Electrochem 15:125–138Google Scholar
  39. 39.
    Mahovic Poljacek S, Risovic D, Cigula T, Gojo M (2011) J Solid State Electrochem 16:1077–1089Google Scholar
  40. 40.
    Moon S-M, Pyun S II (1998) J Solid State Electrochem 2(3):156–161Google Scholar
  41. 41.
    Zerbino J, Gassa L (2003) J Solid State Electrochem 7(3):177–182Google Scholar
  42. 42.
    Belkaid S, Ladjouzi MA, Hamdani S (2011) J Solid State Electrochem 15(3):525–537Google Scholar
  43. 43.
    Jorcin JB, Orazem ME, Pebere N, Tribollet B (2006) Electrochim Acta 51(8-9):1473–1479Google Scholar
  44. 44.
    Lasia A (2014) Electrochemical impedance spectroscopy and its applications. Springer, New YorkGoogle Scholar
  45. 45.
    Pyun S-I, Shin H-C, Lee J-W, Go J-Y (2012) Electrochemistry of insertion materials for hydrogen and lithium. In: Scholz F (ed) Monographs in electrochemistry. Springer, BerlinGoogle Scholar
  46. 46.
    Brug GJ, Van den Eeden ALG, Sluyters-Rehbach M, Sluyters JH (1984) J Electroanal Chem 176(1-2):275–295Google Scholar
  47. 47.
    Hirschorn B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musiani M (2010) Electrochim Acta 55(21):6218–6227Google Scholar
  48. 48.
    Ma H, Cheng X, Li G, Chen S, Quan Z, Zhao S, Niu L (2000) Corros Sci 42(10):1669–1683Google Scholar
  49. 49.
    Wang W, Alfantazi A (2014) Electrochim Acta 131:79–88Google Scholar
  50. 50.
    Lindsey AJ (1966) Pourbaix, M - Atlas of electrochemical equilibria in aqueous solutions. Chem Ind, LondonGoogle Scholar
  51. 51.
    Ghali E (2011) 2 - Activity and passivity of magnesium (Mg) and its alloys A2. In: Song G-L (ed) Corrosion of Magnesium Alloys. Woodhead Publishing, CambridgeGoogle Scholar
  52. 52.
    Ghali E, Dietzel W, Kainer KU (2004) J Mater Eng Perform 13(1):7–23Google Scholar
  53. 53.
    Ikeuba AI, Okafor PC (2018) Pigm Resin Technol.  https://doi.org/10.1108/prt-03-2018-0020
  54. 54.
    Ikeuba AI, Okafor PC, Ekpe UJ, Ebenso EE (2013) Int J Electrochem Sci 8:7455–7467Google Scholar
  55. 55.
    Asmussen RM, Danaie M, Botton GA, Shoesmith DW (2013) Corros Sci 75:114–122Google Scholar
  56. 56.
    Taheri M, Kish JR, Birbilis N, Danaie M, McNally EA, McDermid JR (2014) Electrochim Acta 116:396–403Google Scholar
  57. 57.
    Atrens A, Dietzel W (2007) Adv Eng Mater 9(4):292–297Google Scholar
  58. 58.
    Petty RL, Davidson AW, Kleinberg J (1954) J Am Chem Soc 76(2):363–366Google Scholar
  59. 59.
    Shi Z, Jia JX, Atrens A (2012) Corros Sci 60:296–308Google Scholar
  60. 60.
    Song G, Atrens A, John DS, Wu X, Nairn J (1997) Corros Sci 39(10-11):1981–2004Google Scholar
  61. 61.
    Ralston KD, Williams G, Birbilis N (2012) Corrosion 68(6):507–517Google Scholar
  62. 62.
    Williams G, McMurray HN (2008) J Electrochem Soc 155(7):C340–C349Google Scholar
  63. 63.
    Isaacs HS, Adzic G, Jeffcoate CS (2000) Corrosion 56(10):971–978Google Scholar
  64. 64.
    Shi HW, Tian ZH, Hu TH, Liu FC, Han EH, Taryba M, Lamaka SV (2014) Corros Sci 88:178–186Google Scholar
  65. 65.
    Thomas S, Cole IS, Sridhar M, Birbilis N (2013) Electrochim Acta 97:192–201Google Scholar
  66. 66.
    Zhao M-C, Liu M, Song G-L, Atrens A (2008) Corros Sci 50(11):3168–3178Google Scholar
  67. 67.
    McCafferty E (2010) Thermodynamics of corrosion: Pourbaix diagrams. In: Introduction to corrosion science. Springer, New York.  https://doi.org/10.1007/978-1-4419-0455-3_6

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Alexander I. Ikeuba
    • 1
    • 2
    • 3
    • 4
  • Fujun Kou
    • 5
  • Haowei Duan
    • 5
  • Bo Zhang
    • 1
    • 2
    Email author
  • Jianqiu Wang
    • 2
  • En-Hou Han
    • 2
  • Wei Ke
    • 2
  1. 1.Shenyang National Laboratory for Materials Science, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  3. 3.University of Chinese Academy of Sciences (UCAS)BeijingChina
  4. 4.Department of Pure and Applied ChemistryUniversity of CalabarCalabarNigeria
  5. 5.CRRC Qingdao Sifang CO., LTDQingdaoChina

Personalised recommendations