Journal of Solid State Electrochemistry

, Volume 23, Issue 4, pp 1083–1088 | Cite as

Ionic and electronic transport in the garnet-type vanadate Ca2.5Mg2V3O12

  • Olga N. LeonidovaEmail author
  • Mikhail V. Patrakeev
  • Ilia A. Leonidov
Original Paper


The Ca2.5Mg2V3O12 vanadate with cubic structure (space group Ia\( \overline{3} \)d) has been prepared by solid-state reaction in air. The crystal structure has been determined by Rietveld refinement of powder X-ray diffraction data. In the garnet-type structure, the Ca2+ ions and cationic vacancies occupy the 24c sites. Conductivity has been measured using AC impedance spectroscopy at 400–950 °С in air and in the range of oxygen partial pressure \( \left({p}_{{\mathrm{O}}_2}\right) \) between 10−10 and 0.5 atm. Ca2.5Mg2V3O12 exhibits mixed ionic and electronic conductivity. The n-type electronic conductivity is proportional to \( {p}_{{\mathrm{O}}_2}^{-1/4} \). The ionic and electronic components of conductivity are characterized by the activation energy of about 1.2 and 2.0 eV, respectively. Ion transference number in the air has been shown to increase from 0.6 to almost 1.0 upon temperature decrease from 950 to 600 °С. Analysis of the garnet-like crystal structure allows proposing possible mechanisms of ionic conductivity in which a Ca-ion migration pathway from occupied 24c sites to vacant 24c′ position is carried out through empty 16b sites.


Garnet Ca2.5Mg2V3O12 Calcium-ion conductor Mechanism of migration 


Funding information

This work was partially supported by the Government Research Program for the Institute of Solid State Chemistry and UB RAS (Grant No. 18–10–3–32).


  1. 1.
    Yao GG, Liu P, Zhang HW (2013) Novel series of low-firing microwave dielectric ceramics: Ca5 A 4(VO4)6 (A 2+=Mg, Zn). J Am Ceram Soc 96(6):1691–1693CrossRefGoogle Scholar
  2. 2.
    Yao G, Pei C, Ma H, Xu J, Liu P, Zhang H (2017) Low-temperature firing and microwave dielectric properties of (1–x)Ca5Mg4(VO4)6xBa3(VO4)2 temperature stable ceramics. J Alloys Compd 709:234–239CrossRefGoogle Scholar
  3. 3.
    Huang YL, Yu YM, Tsuboi TJ, Seo HJ (2012) Novel yellow-emitting phosphors of Ca5 M 4(VO4)6 (M=Mg, Zn) with isolated VO4 tetrahedra. Opt Express 20(4):4360–4368CrossRefPubMedGoogle Scholar
  4. 4.
    Li K, Liu J, Mara D, Van Deun R (2018) Synthesis and up-conversion luminescence properties of a novel Yb3+, Er3+ co-doped Ca5Mg4(VO4)6 phosphor. J Alloys Compd 737:767–773CrossRefGoogle Scholar
  5. 5.
    Ronniger G, Mill' BV (1973) Vanadates with a defect garnet structure. Sov Phys Crystallogr 18:303–307Google Scholar
  6. 6.
    Leonidov IA, Belik AA, Leonidova ON, Lazoryak BI (2002) Structural aspects of calcium ion transport in Ca3(VO4)2 and Ca3–xNd2x/3(VO4)2 solid solutions. Russ J Inorg Chem 47:305–312Google Scholar
  7. 7.
    Thangadurai V, Adams S, Weppner W (2004) Crystal structure revision and identification of Li+-ion migration pathways in the garnet-like Li5La3 M 2O12 (M = Nb, Ta) oxides. Chem Mater 16(16):2998–3006CrossRefGoogle Scholar
  8. 8.
    Gu W, Ezbiri M, Prasada Rao R, Avdeev M, Adams S (2015) Effects of penta- and trivalent dopants on structure and conductivity of Li7La3Zr2O12. Solid State Ionics 274:100–105CrossRefGoogle Scholar
  9. 9.
    Rodríguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192(1-2):55–69CrossRefGoogle Scholar
  10. 10.
    Patrakeev MV, Mitberg EB, Leonidov IA, Kozhevnikov VL (2001) Electrical characterization of the intergrowth ferrite Sr4Fe6O13+δ. Solid State Ionics 139(3-4):325–330CrossRefGoogle Scholar
  11. 11.
    Iishi K, Ikuta Y (2006) Isomorphous substitutions in vanadate garnets. N Jb Miner 182:157–163Google Scholar
  12. 12.
    Li YT, Han JT, Wang CA, Vogel SC, Xie H, Xu MW, Goodenough JB (2012) Ionic distribution and conductivity in lithium garnet Li7La3Zr2O12. J Power Sources 209:278–281CrossRefGoogle Scholar
  13. 13.
    Reddy MV, Adams S (2017) Molten salt synthesis and characterization of fast ion conductor Li6.75La3Zr1.75Ta0.25O12. J Solid State Electrochem 21(10):2921–2928CrossRefGoogle Scholar
  14. 14.
    Leonidov IA, Leonidova ON, Slepukhin VK (2000) Electronic conductivity of Sr3–3xLa2x(VO4)2 solid solutions. Inorg Mater 36:72–75CrossRefGoogle Scholar
  15. 15.
    Kofstad P (1972) Nonstoichiometry, diffusion and electrical conductivity in binary metal oxides. Wiley-Interscience, New YorkGoogle Scholar
  16. 16.
    Voronkova VI, Leonidov IA, Kharitonova EP, Belov DA, Patrakeev MV, Leonidova ON, Kozhevnikov VL (2014) Oxygen ion and electron conductivity in fluorite-like molybdates Nd5Mo3O16 and Pr5Mo3O16. J Alloys Compd 615:395–400CrossRefGoogle Scholar
  17. 17.
    Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr Sect B 25(5):925–946CrossRefGoogle Scholar
  18. 18.
    Leonidov IA, Leonidova ON, Surat LL, Samigullina RF (2003) Ca3(VO4)2–LaVO4 cation conductors. Inorg Mater 39(6):616–620CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Solid State ChemistryUral Branch, Russian Academy of SciencesEkaterinburgRussia

Personalised recommendations