Improved cycling performances of binder-free macroporous silicon Li-ion negative electrodes using room temperature ionic liquid electrolyte

  • Erwann Luais
  • Fouad GhamoussEmail author
  • Joe Sakai
  • Thomas Defforge
  • Gaël Gautier
  • François Tran-Van
Original Paper


The present article describes the innovative combination of freestanding macroporous silicon layers on copper foil collectors and room temperature ionic, liquid 1-propyl-1-methylpyrrolidinium bis(trifluosulfonyl)imide (Pyr13 FSI)-containing electrolyte (Pyr13 FSI mixed with 1 M LiTFSI) to produce highly stable negative electrodes for Li-ion batteries. A 20-μm-thick macroporous silicon layer was synthesized by anodization in hydrofluoric acid (HF)-based electrolyte followed by the deposition of a thick and mechanically stable copper layer acting as current collector. After peeling-off the parent substrate, the freestanding macroporous silicon layer was characterized as a negative electrode in a half-cell configuration. The electrode performances were determined under constant charge conditions (500, 750, and 1000 mA h g−1) and exhibited significantly higher stability for over 1800 charge and discharge cycles in 1 M LiTFSI dissolved in Pyr13 FSI.


Electrochemical etching Freestanding macroporous silicon layers Negative electrode Lithium-ion batteries Room temperature ionic liquids 


Funding information

This study was supported by the Region Centre through the consecutive “BLaDES” and “μBaGS” projects.


  1. 1.
    Hatchard T-D, Dahn J-R (2004) In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J Electrochem Soc 151:838–842CrossRefGoogle Scholar
  2. 2.
    Gonzalez J, Sun K, Huang M, Lambros J, Dillon S, Chasiotis I (2014) Three dimensional studies of particle failure in silicon based composite electrodes for lithium ion batteries. J Power Sources 269:334–343CrossRefGoogle Scholar
  3. 3.
    Kasavajjula U, Wang C, Appleby A-J (2007) Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163(2):1003–1039CrossRefGoogle Scholar
  4. 4.
    Chan C-K, Peng H, Liu G, McIlwrath K, Zhang X-F, Huggins R-A, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3(1):31–35CrossRefGoogle Scholar
  5. 5.
    Ge M, Rong J, Fang X, Zhou C (2012) Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett 12(5):2318–2323CrossRefGoogle Scholar
  6. 6.
    Sandu G, Coulombier M, Kumar V, Kassa HG, Avram I, Ye R, Stopin A, Bonifazi D, Gohy J-F, Leclère P, Gonze X, Pardoen T, Vlad A, Melinte S (2018) Kinked silicon nanowires-enabled interweaving electrode configuration for lithium-ion batteries. Sci Rep 8(1):9794CrossRefGoogle Scholar
  7. 7.
    Luais E, Sakai J, Desplobain S, Gautier G, Tran-Van F, Ghamouss F (2013) Thin and flexible silicon anode based on integrated macroporous silicon film onto electrodeposited copper current collector. J Power Sources 242:166–170CrossRefGoogle Scholar
  8. 8.
    Li X, Gu M, Hu S, Kennard R, Yan P, Chen X, Wang C, Sailor M-J, Zhang J-G, Liu J (2014) Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat Commun 5(1):4105CrossRefGoogle Scholar
  9. 9.
    Luais E, Ghamouss F, Wolfman J, Desplobain S, Gautier G, Tran-Van F, Sakai J (2015) Mesoporous silicon negative electrode for thin film lithium-ion microbatteries. J Power Sources 274:693–700CrossRefGoogle Scholar
  10. 10.
    Sing K-S-W, Everett D-H, Haul R-A-W, Moscou L, Pierotti R-A, Rouquérol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57(4):603–619CrossRefGoogle Scholar
  11. 11.
    Lehmann V (2002) Electrochemistry of silicon science, materials and applications. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  12. 12.
    Armand M, Endres F, MacFarlane D-R, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8(8):621–629CrossRefGoogle Scholar
  13. 13.
    Piper D-M, Evans T, Leung K, Watkins T, Olson J, Kim S-C, Han S-S, Bhat V, Oh K-H, Buttry D-A, Lee SH (2015) Stable silicon-ionic liquid interface for next-generation lithium-ion batteries. Nat Commun 6(1):6230CrossRefGoogle Scholar
  14. 14.
    Yamaguchi K, Domi Y, Usui H, Sakaguchi H (2017) Elucidation of the reaction behavior of silicon negative electrodes in a bis (fluorosulfonyl) amide based ionic liquid electrolyte. ChemElectroChem 4(12):3257–3263CrossRefGoogle Scholar
  15. 15.
    Sayah S, Ghamouss F, Tran-Van F, Santos-Peña J, Lemordant D (2017) A bis (fluorosulfonyl) amide based ionic liquid as safe and efficient electrolyte for Si/Sn-Ni/C/Al composite anode. Electrochim Acta 243:197–206CrossRefGoogle Scholar
  16. 16.
    Kerr R, Mazouzi D, Eftekharnia M, Lestriez B, Dupré N, Forsyth M, Guyomard D, Howlett P-C (2017) High-capacity retention of Si anodes using a mixed lithium/phosphonium bis (fluorosulfonyl) amide ionic liquid electrolyte. ACS Energy Lett 2(8):1804–1809CrossRefGoogle Scholar
  17. 17.
    Yamaguchi K, Domi Y, Usui H, Shimizu M, Matsumoto K, Nokami T, Itoh T, Sakaguchi H (2017) Influence of the structure of the anion in an ionic liquid electrolyte on the electrochemical performance of a silicon negative electrode for a lithium-ion battery. J Power Sources 338:103–107CrossRefGoogle Scholar
  18. 18.
    Quiroga-González E, Ossei-Wusu E, Carstensen J, Föll H (2011) How to make optimized arrays of Si wires suitable as superior anode for Li-ion batteries. J Electrochem Soc 158:119–123CrossRefGoogle Scholar
  19. 19.
    Yamaguchi K (2017) Influence of the structure of the anion in an ionic liquid electrolyte on the electrochemical performance of a silicon negative electrode for a lithium-ion battery. J Power Sources 338:103–107CrossRefGoogle Scholar
  20. 20.
    Chen X, Gerasopoulos K, Guo J, Brown A, Wang C, Ghodssi R, Culver J-N (2011) A patterned 3D silicon anode fabricated by electrodeposition on a virus-structured current collector. Adv Funct Mater 21(2):380–387CrossRefGoogle Scholar
  21. 21.
    He Y, Yu X, Li G, Wang R, Li H, Wang Y, Gao H, Huang X (2012) Shape evolution of patterned amorphous and polycrystalline silicon microarray thin film electrodes caused by lithium insertion and extraction. J Power Sources 216:131–138CrossRefGoogle Scholar
  22. 22.
    Laïk B, Ung D, Caillard A, Sorin Cojocaru C, Pribat D, Pereira-Ramos J-P (2014) An electrochemical and structural investigation of silicon nanowires as negative electrode for Li-ion batteries. J Solid State Electrochem 14:1835–1839CrossRefGoogle Scholar
  23. 23.
    Lee D-J, Lee H, Ryou M-H, Han G-B, Lee J-N, Song J, Choi J, Cho K-Y, Lee Y-M, Park J-K (2015) Electrospun three-dimensional mesoporous silicon nanofibers as an anode material for high-performance lithium secondary batteries. ACS Appl Mater Interfaces 5:12005–12010CrossRefGoogle Scholar
  24. 24.
    Jin Y, Li S, Kushima A, Zheng X, Sun Y, Xie J, Sun J, Xue W, Zhou G, Wu J, Shi F, Zhang R, Zhu Z, So K, Cui Y, Li J (2017) Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%. Energy Environ Sci 10(2):580–592CrossRefGoogle Scholar
  25. 25.
    Sämann C, Kelesiadou K, Hosseinioun S-S, Wachtler M, Köhler J-R, Birke K-P, Schubert M-B, Werner J-H (2017) Laser porosificated silicon anodes for lithium ion batteries. Adv Energy Mater 8:701–705Google Scholar
  26. 26.
    Wu H, Yi C (2012) Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7(5):414–429CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Erwann Luais
    • 1
    • 2
  • Fouad Ghamouss
    • 2
    Email author
  • Joe Sakai
    • 1
  • Thomas Defforge
    • 1
  • Gaël Gautier
    • 1
  • François Tran-Van
    • 2
  1. 1.GREMAN UMR-CNRS 7347, INSA Centre Val de LoireUniversité de ToursToursFrance
  2. 2.Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l’Energie (PCM2E)Université de ToursToursFrance

Personalised recommendations