Journal of Solid State Electrochemistry

, Volume 23, Issue 4, pp 1099–1107 | Cite as

Noncovalent interactions based self-assembled bichromophoric sensitizer for dye-sensitized solar cells

  • Sagar D. DelekarEmail author
  • Krantiveer V. More
  • Ananta G. Dhodamani
  • Krishnendu Maity
  • Steve F. A. Acquah
  • Naresh Dalal
  • Dillip K. PandaEmail author
Original Paper


A noncovalent interaction based self-assembled ruthenium (II) phthalocyanine (RuPc) and N-pyridyl-peryleneimide (PyPMI) dyad has been exploited to fabricate n-type dye-sensitized solar cells (DSSCs). This supramolecular dyad design is an alternative method to replace the most challenging synthesis of covalent-linked dyads. Metal-coordinated-based dyad complex improved the light-harvesting properties of the photoanodes as opposed to when individual dye anchored on TiO2 surface alone. DSSCs comprise of RuPc⋅PyPMI dyad convert light-to-electrical energy more efficiently (η = 2.29%) than those made of single dye under one sun irradiation (100 mW cm−2) condition. The enhanced photovoltaic performance of the dyad-based devices is due to the broader light absorption of the dyad in the longer wavelengths, enabling better electron injection into the conduction band of TiO2. The combined effect of efficient electron-hole charge separation and the long-lived charge-separated states facilitated the higher short-circuit current density (Jsc) and open-circuit voltage (Voc) of the devices. The enhancement of Voc and Jsc of the devices is confirmed by measuring current–voltage (I–V) curve and incident photon to current conversion efficiency (IPCE) spectrum of each device.

Graphical abstract

Fabrication and operational principles of self-assembled PyPMI--RuPc dyad based DSSCs


Interconnectivity Optical absorption properties Dyad Fill factor Photovoltaic study 



Dr. D. K. Panda (DKP) and Prof. S. D. Delekar (SDD) acknowledge Prof. Sourav Saha (Department of Chemistry and Biochemistry, FSU, USA) allowing his photovoltaic lab for fabrication and characterization of all solar cells. This article is dedicated to Sir Harold Kroto as he was a mentor to SDD during his Raman post-doctoral studies at FSU, USA, and a collaborator to DKP.

Author contributions

The manuscript has written through contributions of all authors. All authors have approved the final version of the manuscript.

Funding information

SDD is financially supported by the University Grants Commission, New Delhi, India (UGC No. F 5-88/2014 (IC) dated 9 Sep. 2014), under Raman post-doctoral fellowship at the Florida State University, USA, as well as by the Department of Science and Technology, New Delhi, India (DST No. SR/FT/CS-37/2010), for awarding fast-track proposal for young scientists.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

10008_2019_4196_MOESM1_ESM.docx (2.7 mb)
ESM 1 (DOCX 2.69 mb)


  1. 1.
    Delekar SD, Dhodamani AG, More KV, Dongale TD, Kamat RK, Acquah SF, Dalal NS, Panda DK (2018) Structural and optical properties of nanocrystalline TiO2 with multiwalled carbon nanotubes and its photovoltaic studies using Ru (II) sensitizers. ACS Omega 3(3):2743–2756CrossRefGoogle Scholar
  2. 2.
    Mallouk TE (1991) Bettering nature’s solar cells. Nature 353(6346):698–699CrossRefGoogle Scholar
  3. 3.
    Grätzel M (2001) Photoelectrochemical cells. Nature 414(6861):338–344CrossRefGoogle Scholar
  4. 4.
    Zhang S, Islam A, Yang X, Qin C, Zhang K, Numata Y, Chen H, Han L (2013) Improvement of spectral response by co-sensitizers for high efficiency dye-sensitized solar cells. JMater Chem A 1(15):4812–4819CrossRefGoogle Scholar
  5. 5.
    Zhang S, Yang X, Numata Y, Han L (2013) Highly efficient dye-sensitized solar cells: progress and future challenges. Energy Environ Sci 6(5):1443–1464CrossRefGoogle Scholar
  6. 6.
    Koli V, Dhodamani A, More K, Acquah SF, Panda DK, Pawar S, Delekar S (2017) A simple strategy for the anchoring of anatase titania on multi-walled carbon nanotubes for solar energy harvesting. Sol Energy 149:188–194CrossRefGoogle Scholar
  7. 7.
    Gregg BA (2003) Excitonic solar cells. J Phys Chem B 107(20):4688–4698CrossRefGoogle Scholar
  8. 8.
    Imahori H, Umeyama T (2009) Donor—acceptor nanoarchitecture on semiconducting electrodes for solar energy conversion. JPhys Chem C 113(21):9029–9039CrossRefGoogle Scholar
  9. 9.
    Erten-Ela S, Yilmaz MD, Icli B, Dede Y, Icli S, Akkaya EU (2008) A panchromatic boradiazaindacene (BODIPY) sensitizer for dye-sensitized solar cells. Org Lett 10(15):3299–3302CrossRefPubMedGoogle Scholar
  10. 10.
    Mozer AJ, Panda DK, Gambhir S, Winther-Jensen B, Wallace GG (2010) Microsecond dye regeneration kinetics in efficient solid state dye-sensitized solar cells using a photoelectrochemically deposited PEDOT hole conductor. J Am Chem Soc 132(28):9543–9555CrossRefPubMedGoogle Scholar
  11. 11.
    Mozer AJ, Panda DK, Gambhir S, Romeo TC, Winther-Jensen B, Wallace GG (2009) Flexible and compressible Goretex−PEDOT membrane electrodes for solid-state dye-sensitized solar cells. Langmuir 26:1452–1455CrossRefGoogle Scholar
  12. 12.
    Zhao J, Yang X, Cheng M, Li S, Sun L (2013) New organic dyes with a phenanthrenequinone derivative as the π-conjugated bridge for dye-sensitized solar cells. The. J Phys Chem C 117(25):12936–12941CrossRefGoogle Scholar
  13. 13.
    Chen WC, Kong FT, Li ZQ, Pan JH, Liu XP, Guo FL, Zhou L, Huang Y, Yu T, Dai SY (2016) Superior light-harvesting heteroleptic ruthenium (II) complexes with electron-donating antennas for high performance dye-sensitized solar cells. ACS Appl MaterIinterfaces 8(30):19410–19417CrossRefGoogle Scholar
  14. 14.
    D'Souza F, Smith PM, Zandler ME, McCarty AL, Itou M, Araki Y, Ito O (2004) Energy transfer followed by electron transfer in a supramolecular triad composed of boron dipyrrin, zinc porphyrin, and fullerene: a model for the photosynthetic antenna-reaction center complex. J Am Chem Soc 126(25):7898–7907CrossRefPubMedGoogle Scholar
  15. 15.
    Karousis N, Ortiz J, Ohkubo K, Hasobe T, Fukuzumi S, Sastre-Santos A, Tagmatarchis N (2012) Zinc phthalocyanine–graphene hybrid material for energy conversion: synthesis, characterization, photophysics, and photoelectrochemical cell preparation. J Phys Chem C 116(38):20564–20573CrossRefGoogle Scholar
  16. 16.
    Yilmaz MD, Bozdemir OA, Akkaya EU (2006) Light harvesting and efficient energy transfer in a boron-dipyrrin (BODIPY) functionalized perylenediimide derivative. Org Lett 8(13):2871–2873CrossRefPubMedGoogle Scholar
  17. 17.
    Mahmood Z, Xu K, Küçüköz B, Cui X, Zhao J, Wang Z, Karatay A, Yaglioglu HG, Hayvali M, Elmali A (2015) DiiodoBodipy-perylenebisimide dyad/triad: preparation and study of the intramolecular and intermolecular electron/energy transfer. J Organomet Chem 80:3036–3049CrossRefGoogle Scholar
  18. 18.
    Ogunsolu OO, Murphy IA, Wang JC, Das A, Hanson K (2016) Energy and electron transfer cascade in self-assembled bilayer dye-sensitized solar cells. ACS Appl Mater Interfaces 8(42):28633–28640CrossRefPubMedGoogle Scholar
  19. 19.
    Kim I, Haverinen HM, Wang Z, Madakuni S, Kim Y, Li J, Jabbour GE (2009) Efficient organic solar cells based on planar metallophthalocyanines. Chem Mater 21(18):4256–4260CrossRefGoogle Scholar
  20. 20.
    Ikeuchi T, Nomoto H, Masaki N, Griffith MJ, Mori S, Kimura M (2014) Molecular engineering of zinc phthalocyanine sensitizers for efficient dye-sensitized solar cells. Chem Commun 50(16):1941–1943CrossRefGoogle Scholar
  21. 21.
    Subbaiyan NK, Wijesinghe CA, D’Souza F (2009) Supramolecular solar cells: surface modification of nanocrytalline TiO2 with coordinating ligands to immobilize sensitizers and dyads via metal−ligand coordination for enhanced photocurrent generation. J Am Chem Soc 131(41):14646–14647CrossRefPubMedGoogle Scholar
  22. 22.
    Armstrong NR (2000) Phthalocyanines and porphyrins as materials. J Porphyrins Phthalocyanines 4(04):414–417CrossRefGoogle Scholar
  23. 23.
    Panda DK, Goodson FS, Ray S, Saha S (2014) Dye-sensitized solar cells based on multichromophoric supramolecular light-harvesting materials. Chem Commun 50(40):5358–5360CrossRefGoogle Scholar
  24. 24.
    Panda DK, Goodson FS, Ray S, Lowell R, Saha S (2012) Multichromophoric dye-sensitized solar cells based on supramolecular zinc-porphyrin⋅perylene-imide dyads. Chem Commun 48(70):8775–8777CrossRefGoogle Scholar
  25. 25.
    Lever AB, Pickens SR, Minor PC, Licoccia S, Ramaswamy BS, Magnell K (1981) Charge-transfer spectra of metallophthalocyanines: correlation with electrode potentials. J Am Chem Soc 103(23):6800–6806CrossRefGoogle Scholar
  26. 26.
    Prasad DR, Ferraudi G (1982) Excited-state redox properties of ruthenium (II) phthalocyanine from electron-transfer quenching. J Phys Chem 86(20):4037–4040CrossRefGoogle Scholar
  27. 27.
    Claessens CG, Hahn U, Torres T (2008) Phthalocyanines: from outstanding electronic properties to emerging applications. Chem Rec 8(2):75–97CrossRefPubMedGoogle Scholar
  28. 28.
    Lever AB, Minor PC (1981) Electrochemistry of main-group phthalocyanines. Inorg Chem 20(11):4015–4017CrossRefGoogle Scholar
  29. 29.
    Shankar K, Feng X, Grimes CA (2009) Enhanced harvesting of red photons in nanowire solar cells: evidence of resonance energy transfer. ACS Nano 3(4):788–794CrossRefPubMedGoogle Scholar
  30. 30.
    Cid JJ, Yum JH, Jang SR, Nazeeruddin MK, Martínez-Ferrero E, Palomares E, Ko J, Grätzel M, Torres T (2007) Molecular cosensitization for efficient panchromatic dye-sensitized solar cells. Angew Chem 119(44):8510–8514CrossRefGoogle Scholar
  31. 31.
    Jiménez ÁJ, Spänig F, Rodriguez-Morgade MS, Ohkubo K, Fukuzumi S, Guldi DM, Torres TA (2007) Tightly coupled Bis (zinc (II) phthalocyanine)−perylenediimide ensemble to yield long-lived radical ion pair states. Org Lett 9(13):2481–2484CrossRefPubMedGoogle Scholar
  32. 32.
    Rodriguez-Morgade MS, Torres T, Atienza-Castellanos C, Guldi DM (2006) Supramolecular Bis (rutheniumphthalocyanine)−perylenediimide ensembles: simple complexation as a powerful tool toward long-lived radical ion pair states. J Am Chem Soc 128(47):15145–15154CrossRefPubMedGoogle Scholar
  33. 33.
    Silvestri F, López-Duarte I, Seitz W, Beverina L, Martínez-Díaz MV, Marks TJ, Guldi DM, Pagani GA, Torres TA (2009) squaraine–phthalocyanine ensemble: towards molecular panchromatic sensitizers in solar cells. Chem Commen 30:4500–4502CrossRefGoogle Scholar
  34. 34.
    Jacobs R, Stranius K, Maligaspe E, Lemmetyinen H, Tkachenko NV, Zandler ME, D’Souza F (2012) Syntheses and excitation transfer studies of near-orthogonal free-base porphyrin–ruthenium Phthalocyanine dyads and pentad. Inorg Chem 51(6):3656–3665CrossRefPubMedGoogle Scholar
  35. 35.
    Cammidge AN, Berber G, Chambrier I, Hough PW, Cook MJ (2005) Octaalkylphthalocyaninato ruthenium (II) complexes with mixed axial ligands and supramolecular porphyrin: phthalocyanine structures derived from them. Tetrahedron 61(16):4067–4074CrossRefGoogle Scholar
  36. 36.
    Koo C, Hong T, Lee M, Park HS (2013) Estimation of the monthly average daily solar radiation using geographic information system and advanced case-based reasoning. Environ Sci Technol 47(9):4829–4839CrossRefPubMedGoogle Scholar
  37. 37.
    D'Souza F, Hsieh YY, Deviprasad GR (1996) Spectral and electrochemical investigations on the “tail-on” and “tail-off” mechanism in pyridine covalently bound zinc (II) porphyrins. Inorg Chem 35(19):5747–5749CrossRefPubMedGoogle Scholar
  38. 38.
    Bredas JL, Silbey R, Boudreaux DS, Chance RR (1983) Chain-length dependence of electronic and electrochemical properties of conjugated systems: polyacetylene, polyphenylene, polythiophene, and polypyrrole. J Am Chem Soc 105(22):6555–6559CrossRefGoogle Scholar
  39. 39.
    Fischer MK, López-Duarte I, Wienk MM, Martínez-Díaz MV, Janssen RA, Bäuerle P, Torres T (2009) Functionalized dendritic oligothiophenes: ruthenium phthalocyanine complexes and their application in bulk heterojunction solar cells. J Am Chem Soc 131(24):8669–8676CrossRefPubMedGoogle Scholar
  40. 40.
    Watanabe M, Hagiwara H, Iribe A, Ogata Y, Shiomi K, Staykov A, Ida S, Tanaka K, Ishihara T (2014) Spacer effects in metal-free organic dyes for visible-light-driven dye-sensitized photocatalytic hydrogen production. JMater Chem A 2(32):12952–12961CrossRefGoogle Scholar
  41. 41.
    O'Regan BC, López-Duarte I, Martínez-Díaz MV, Forneli A, Albero J, Morandeira A, Palomares E, Torres T, Durrant JR (2008) Catalysis of recombination and its limitation on open circuit voltage for dye sensitized photovoltaic cells using phthalocyanine dyes. J Am Chem Soc 130(10):2906–2907CrossRefPubMedGoogle Scholar
  42. 42.
    Kamat PV, Haria M, Hotchandani S (2004) C60 cluster as an electron shuttle in a Ru (II)-polypyridyl sensitizer-based photochemical solar cell. J Phys Chem B 108(17):5166–5170CrossRefGoogle Scholar
  43. 43.
    Zheng Y, Klankowski S, Yang Y, Li J (2014) Preparation and characterization of TiO2 barrier layers for dye-sensitized solar cells. ACS Appl Mater Interfaces 6(13):10679–10686CrossRefPubMedGoogle Scholar
  44. 44.
    Delekar S, More K, Dhodamani A, Patil S, Dongale T, Maity K, Dalal N, Panda DK (2018) Molecular self-assembled designing and characterization of TiO2 NPs-CdS QDs-dye composite for photoanode materials. Mater Charact 139:337–346CrossRefGoogle Scholar
  45. 45.
    Kaiser TE, Stepanenko V, Würthner F (2009) Fluorescent J-aggregates of core-substituted perylene bisimides: studies on structure—property relationship, nucleation—elongation mechanism, and sergeants-and-soldiers principle. J Am Chem Soc 131(19):6719–6732CrossRefPubMedGoogle Scholar
  46. 46.
    Shibano Y, Umeyama T, Matano Y, Imahori H (2007) Electron-donating perylene tetracarboxylic acids for dye-sensitized solar cells. Org Lett 9(10):1971–1974CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sagar D. Delekar
    • 1
    • 2
    Email author
  • Krantiveer V. More
    • 2
  • Ananta G. Dhodamani
    • 2
  • Krishnendu Maity
    • 1
  • Steve F. A. Acquah
    • 1
  • Naresh Dalal
    • 1
  • Dillip K. Panda
    • 3
    Email author
  1. 1.Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeUSA
  2. 2.Nanoscience Research laboratory, Department of ChemistryShivaji UniversityKolhapurIndia
  3. 3.Department of ChemistryClemson UniversityClemsonUSA

Personalised recommendations