Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 2, pp 553–563 | Cite as

Voltammetric determination of chlorothalonil and its respective reduction mechanism studied by density functional theory

  • Thays Souza Lima
  • Mauro A. La-Scalea
  • Cristiano Raminelli
  • Fábio R. Simões
  • Edison FrancoJr
  • Gabriela Dias da Silva
  • Michele Aparecida Salvador
  • Paula Homem-de-Mello
  • Hueder P. M. de Oliveira
  • Lúcia CodognotoEmail author
Original Paper
  • 87 Downloads

Abstract

A simple, fast, and direct electroanalytical method has been developed for the pesticide chlorothalonil determination using a boron-doped diamond electrode and square-wave voltammetry technique. In the pH range values between 8.0 and 10.0, the voltammetric results showed three reduction peaks − 1.07, − 1.2, and − 1.4 V (vs. Ag/AgCl) for the chlorothalonil. This reduction mechanism is based on three consecutive dehalogenation steps proposed by density functional theory and the calculation of the Chelpg charge values. The results showed that the most negatively charged carbon was the first dehalogenated and the following dehalogenations for the intermediates occurred by the chloride anions loss from their most respective negative carbon atoms. From the square wave voltammetric behavior of chlorothalonil, an analytical method was developed in which the calibration curve was obtained in a concentration range of 1.2 × 10−7 to 4.0 × 10−6 mol L−1 with sensitivity of 0.29 A/mol L−1 and linear correlation coefficient of 0.997. The limits of detection (LOD) and quantification (LOQ) were 4.0 × 10−8 mol L−1 (10.6 μg L−1) and 1.2 × 10−7 mol L−1 (55.8 μg L−1), respectively, being lower than the maximum values allowed by the Environmental Protection Agency and the Brazilian National Surveillance Agency. Tea infusion samples (lemon grass, spearmint, strawberry, and orchard) were spiked with the chlorothalonil pesticide standard solutions. The results showed recovery values between 98.0 and 103.0% for 1.0 × 10−6 mol L−1concentration, indicating the applicability of this method for different complex matrices.

Keywords

Boron-doped diamond electrode (BDD) Chlorothalonil SWV Tea infusion samples Density functional theory 

Notes

Acknowledgments

We thank Dra. Elizabeth Abrantes for the English revision.

Funding information

FAPESP (2008/50588-6 and 2017/24742-7) and CNPq.

Supplementary material

10008_2018_4162_MOESM1_ESM.docx (1.7 mb)
ESM 1 (DOCX 1692 kb)

References

  1. 1.
    Bila DM, Dezotti M (2007) Desreguladores endocrinos no meio ambiente: efeitos e consequencias. Quím Nova 30:651–666CrossRefGoogle Scholar
  2. 2.
    Oregon State University (1996) Extension Toxicology Network: Pesticide information profiles Chlorothalonil. http://extoxnet.orst.edu/pips/chloroth.htm. Accessed june 2016
  3. 3.
    Vouvoulis N, Scrimshaw MD, Lester JN (1999) Analytical methods for the determination of 9 antifouling paint booster biocides in estuarine water samples. Chemosphere 38:3503–3516CrossRefGoogle Scholar
  4. 4.
    EPA: US Environmental Protection Agency (1999) Chlorothalonil: Reregistration Eligibility Decision. (RED). EPA 738-R-99-004. https://archive.epa.gov/pesticides/ reregistration/web/pdf/0097red.pdf Accessed june 2016
  5. 5.
  6. 6.
    Hirakawa Y, Yamasaki T, Watanabe E, Okazaki F, Murakami-Yamaguchi Y, Oda M, Iwasa S, Narita H, Miyake S (2015) Development of an immunosensor for determination of the fungicide chlorothalonil in vegetables, using surface plasmon resonance. J Agric Food Chem 63:6325–6330CrossRefGoogle Scholar
  7. 7.
    Hou F, Zhao L, Liu F (2016) Determination of chlorothalonil residue in cabbage by a modified QuEChERS-Based extraction and gas chromatography-mass spectrometry. Food Anal Methods 9:656–663CrossRefGoogle Scholar
  8. 8.
    Okazaki F, Hirakawa Y, Yamaguchi-Murakami Y, Harada A, Watanabe E, Iwasa S, Narita H, Miyake S (2014) Development of direct competitive ELISA for residue analysis of fungicide chlorothalonil in vegetables. Food Hyg Saf Sci 55:65–72CrossRefGoogle Scholar
  9. 9.
    Rahman MM, Park JH, El-Aty AMA, Choi JH, Bae HR, Yang A, Park KH, Shim JH (2012) Single-step modified QuEChERS for determination of chlorothalonil in shallot (Allium ascalonicum) using GC-μECD and confirmation via mass spectrometry. Biomed Chromatogr 27:416–421CrossRefGoogle Scholar
  10. 10.
    Xin Z, Xiao-Huan Z, Dong-Yue W, Peng-Lei C, Zhi W (2009) Developments of dispersive liquid-liquid microextraction technique. Chin J Anal Chem 37:41–45Google Scholar
  11. 11.
    Yamamoto A, Miyamato L, Kitagawa M, Moriwaki H, Miyakoda H, Kawasaki H, Arakawa R (2009) Anal Sci 25:693–697CrossRefGoogle Scholar
  12. 12.
    Yamasaki T, Inoue T, Hirakawa Y, Miyake S, Ueno E, Saito I (2015) Validation of ELISA kits for pesticide residue analysis in vegetables and fruits. Food Hyg Saf Sci 56:240–246CrossRefGoogle Scholar
  13. 13.
    Wong JW, Webster MG, Bezabeh DZ, Hengel MJ, Ngim KK, Krynitsky AJ et al (2004) Multiresidue determination of pesticides in malt beverages by capillary gas chromatography with mass spectrometry and selected ion monitoring. J Agric Food Chem 52:6361–6372CrossRefGoogle Scholar
  14. 14.
    Walorczyk S, Gnusowski B (2006) Fast and sensitive determination of pesticide residues in vegetables using low-pressure gas chromatography with a triple quadrupole mass spectrometer. J Chromatogr A 1128:236–243CrossRefGoogle Scholar
  15. 15.
    Walorczyk S (2007) Development of a multi-residue screening method for the determination of pesticides in cereals and dry animal feed using gas chromatography–triple quadrupole tandem mass spectrometry. J Chromatogr A 1165:200–212CrossRefGoogle Scholar
  16. 16.
    Guedes TJ, Heleno FF, Amaral MO, Pinto NAVD, de Queiroz MELR, da Silva DF et al (2014) A simple and efficient method employing solid–liquid extraction with low-temperature partitioning for the determination/monitoring of pesticide residues in strawberries by GC/ECD. J Braz Chem Soc 25:1520–1527Google Scholar
  17. 17.
    El Mouden OI, Salghi R, Zougagh M, Ríos A, Chakir A, El Rachidi M et al (2013) Pesticide residue levels in peppers cultivated in Souss Masa valley (Morocco) after multiple applications of azoxystrobin and chlorothalonil. Int J Environ Anal Chem 93:499–510CrossRefGoogle Scholar
  18. 18.
    Catalá-Icardo M, Gomez-Benito C, Simó-Alfonso EF, Herrero-Martínez JM (2017) Determination of azoxystrobin and chlorothalonil using a methacrylate-based polymer modified with gold nanoparticles as solid-phase extraction sorbent. Anal Bional Chem 409:243–250CrossRefGoogle Scholar
  19. 19.
    Garrido EM, Delerue-Matos C, Lima JLFC, Brett AMO (2004) Electrochemical methods in pesticides control. Anal Lett 37:1755–1791CrossRefGoogle Scholar
  20. 20.
    Liang HC, Bilon N, Hay MT (2015) Analytical methods for pesticide residues in the water environment. Water Environ Res 87:1923–1937CrossRefGoogle Scholar
  21. 21.
    Compton RG, Foord JS, Marken F (2003) Electroanalysis at diamond-like and doped-diamond electrodes. Electroanalysis 15:1349–1363CrossRefGoogle Scholar
  22. 22.
    Jevtic S, Vukojevic V, Djurdjic S, Pergal MV, Manojlovic DD, Petkovic BB, Stankovic DM (2018) First electrochemistry of herbicide pethoxamid and its quantification using electroanalytical approach from mixed commercial product. Electrochim Acta 277:136–142CrossRefGoogle Scholar
  23. 23.
    Codognoto L, Tanimoto ST, Pedrosa VA, Suffredini HB, Machado SA, Avaca LA (2006) Electroanalytical determination of carbaryl in natural waters on boron doped diamond electrode. Electroanalysis 18:253–258CrossRefGoogle Scholar
  24. 24.
    Lima T, Silva HTD, Labuto G, Simões FR, Codognoto L (2015) An experimental design for simultaneous determination of carbendazim and fenamiphos by electrochemical method. Electroanalysis 28:817–822CrossRefGoogle Scholar
  25. 25.
    Pedrosa VA, Codognoto L, Machado SA, Avaca LA (2004) Is the boron-foped diamond electrode a suitable substitute for mercury in pesticide analyses? A comparative study of 4-nitrophenol quantification in pure and natural waters. J Electroanal Chem 573:11–18Google Scholar
  26. 26.
    Gan P, Compton RG, Foord JS (2013) The voltammetry and electroanalysis of some estrogenic compounds at modified diamond electrodes. Electroanalysis 25:2423–2434CrossRefGoogle Scholar
  27. 27.
    Levent A (2012) Electrochemical determination of melatonin hormone using a boron-doped diamond electrode. Diam Relat Mater 21:114–119CrossRefGoogle Scholar
  28. 28.
    Santos KD, Braga OC, Vieira IC, Spinelli A (2010) Electroanalytical determination of estriol hormone using a boron-doped diamond electrode. Talanta 80:1999–2006CrossRefGoogle Scholar
  29. 29.
    Yardim Y, Erez ME (2010) Electrochemical behavior and electroanalytical determination of indole-3-Acetic acid phytohormone on a boron-doped diamond electrode. Electroanalysis 23:667–673Google Scholar
  30. 30.
    Zavazalova J, Dejmkova H, Barek J, Peckova K (2013) Voltammetric and amperometric determination of mixtures of aminobiphenyls and aminonaphthalenes using boron doped diamond electrode. Electroanalysis 25:253–262CrossRefGoogle Scholar
  31. 31.
    Brycht M, Kaczmarska M, Uslu B, Ozkan SA, Skrzypek S (2016) Sensitive determination of anticancer drug imatinib in spiked human urine samples by differential pulse voltammetry on anodically pretreated boron-doped diamond electrode. Diam Relat Mater 68:13–22CrossRefGoogle Scholar
  32. 32.
    Zavazalova J, Prochazkova K, Schwarzova-Peckova K (2016) Boron doped diamond electrodes for voltammetric determination of benzophenone-3. Anal Lett 49:80–91CrossRefGoogle Scholar
  33. 33.
    Brycht M, Lochyński P, Barek J, Skrzypek S, Kuczewski K, SchwarzovaPeckova K (2016) Electrochemical study of 4-chloro-3-methylphenol on anodically pretreated boron-doped diamond electrode in the absence and presence of a cationic surfactant. J Electroanal Chem 771:1–9CrossRefGoogle Scholar
  34. 34.
    Oliveira SCB, Oliveira-Brett AM (2010) Boron doped diamond electrode pre-treatments effect on the electrochemical oxidation of dsDNA, DNA bases, nucleotides, homopolynucleotides and biomarker 8-oxoguanine. J Electroanal Chem 648:60–66CrossRefGoogle Scholar
  35. 35.
    Monadjemi S, El-Roz M, Richard C, Ter-Halle A (2011) Photoreduction of chlorothalonil fungicide on plant leaf models. Environ Sci Technol 45:9582–9589CrossRefGoogle Scholar
  36. 36.
    Ghauch A, Tuqan A (2008) Catalytic degradation of chlorothalonil in water using bimetallic iron-based systems. Chemosphere 73:751–759CrossRefGoogle Scholar
  37. 37.
    Becke AD (2014) Perspective: fifty years of density-functional theory in chemical physics. J Chem Phys 140:18A301CrossRefGoogle Scholar
  38. 38.
    Jones RO (2015) Density functional theory: Its origins, rise to prominence, and future. Rev Mod Phys 87:897–923CrossRefGoogle Scholar
  39. 39.
    Obot IB, Macdonald DD, Gasem ZM (2015) Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: an overview. Corros Sci 99:1–30CrossRefGoogle Scholar
  40. 40.
    Domingo L, Ríos-Gutiérrez M, Pérez P (2016) Applications of the conceptual density functional theory to organic chemistry reactivity. Molecules 21:748CrossRefGoogle Scholar
  41. 41.
    Domingo LR, Chamorro E, Pérez P (2008) Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. J Organomet Chem 73:4615–4624CrossRefGoogle Scholar
  42. 42.
    Thapa B, Schlegel HB (2016) Density functional theory calculation of pka’s of thiols in aqueous solution using explicit water molecules and the polarizable continuum model. J Phys Chem A 120:5726–5735CrossRefGoogle Scholar
  43. 43.
    Galano A, Munoz-Rugeles L, Alvarez-Idaboy JR, Bao JL, Truhlar DG (2016) Hydrogen abstraction reactions from phenolic compounds by peroxyl radicals: multireference character and density functional theory rate constants. J Phys Chem A 120:4634–4642CrossRefGoogle Scholar
  44. 44.
    Salatino CT, Melo DU, Yoshitake AM, Sgarbi LS, Homem-de-Mello P, Bartoloni FH, Ciscato LFML (2017) Mechanistic model for the firefly luciferin regeneration in biomimetic conditions: a model for the in vivo process? Org Biomol Chem 15:3479–3484CrossRefGoogle Scholar
  45. 45.
    Salvador MA, Sousa CP, Morais S, Lima-Neto P, Correia AN, Homem-de-Mello P (2017) Evaluation of degradation mechanism of chlorhexidine by means of density functional theory calculations. Comput Biol Chem 71:82–88CrossRefGoogle Scholar
  46. 46.
    Ribeiro FWP, Oliveira TMBF, Silva LF, Mendonça GLF, Homem-de-Mello P, Becker H, Lima-Neto P, Correia AN, Freire VN (2013) Sensitive voltammetric responses and mechanistic insights into the determination of residue levels of endosulfan in fresh foodstuffs and raw natural waters. J Microchem 110:40–47CrossRefGoogle Scholar
  47. 47.
    Almeida NEC, Homem-de-Mello P, Keukeleire D, Cardoso D (2011) Reactivity of beer bitter acids toward the 1-hydroxiethyl as probed by spin-trapping electron paramagnetic resonance (EPR) and electrospray ionization-tandem mass spectrometry (ESI-MS/MS). J Agric Food Chem 59:4183–4191CrossRefGoogle Scholar
  48. 48.
    Toledo RA, Santos MC, Suffredini HB, Homem-de-Mello P, Honorio KM, Mazo LH (2009) DFT and electrochemical studies on nortriptyline oxidation sites. J Mol Model 15:945–952CrossRefGoogle Scholar
  49. 49.
    Caetano J, Homem-de-Mello P, Silva ABF, Ferreira AG, Avaca LA (2007) Studies of the electrochemical reduction of atrazine on a mercury electrode in acid medium: an electrochemical and NMR approach. J Electroanal Chem 608:47–51CrossRefGoogle Scholar
  50. 50.
    Suffredini HB, Santos MC, Codognoto L, Homem-de-Melo P, Honório KM, Silva ABF, Machado SAS, Avaca LA (2005) Electrochemical behaviour of nicotine studied by voltammetric techniques at boron-doped diamond electrodes. Anal Lett 38:1587–1599CrossRefGoogle Scholar
  51. 51.
    Suffredini HB, Pedrosa VA, Codognoto L, Machado SAS, Rocha-Filho RC, Avaca LA (2004) Enhanced electrochemical response of boron-doped diamond electrodes brought on by cathodic surface pre-treatment. Electrochem Acta 49:4021–4026CrossRefGoogle Scholar
  52. 52.
    Singh UC, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5:129–145CrossRefGoogle Scholar
  53. 53.
    Chirlian LE, Francl MM (1987) Atomic charges derived from electrostatic potentials: a detailed study. J Comput Chem 8:894–905CrossRefGoogle Scholar
  54. 54.
    Besler BH, Merz KM Jr, Kollman PA (1990) Atomic charges derived from semiempirical methods. J Comput Chem 11:431–439CrossRefGoogle Scholar
  55. 55.
    Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11:361–373CrossRefGoogle Scholar
  56. 56.
    Jensen F (2007) Introduction to computational chemistry, 2nd edn. John Wiley & Sons, New YorkGoogle Scholar
  57. 57.
    Cramer CJ (2004) Essentials of computational chemistry: theories and models, 2 rd edn. John Wiley & Sons, New YorkGoogle Scholar
  58. 58.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision D.01. Gaussian, Inc, Wallingford CTGoogle Scholar
  59. 59.
    Zhan G, Dixon DA (2003) The nature and absolute hydration free energy of the solvated electron in water. J Phys Chem B 107:4403–4417CrossRefGoogle Scholar
  60. 60.
    Souza D, Machado SAS, Avaca LA (2003) Voltametria de onda quadrada. Primeira parte: aspectos teóricos. Química Nova 26:81–89CrossRefGoogle Scholar
  61. 61.
    Brett CMA, Oliveira-Brett AM (1993) Electrochemistry. Principles, methods and applications, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  62. 62.
    Peters DG (2001) Halogenated organic compounds. In: Lund H, Hammerich O (eds) Organic electrochemistry, 4th edn. Marcel Dekker, New YorkGoogle Scholar
  63. 63.
    Sokolová R, Hromadová M, Pospíšil L (2008) Heterogeneous electron transfer of pesticides current trends and applications. In: New trends Anal Environ Cult Herit Chem. Transworld Research Network. Transworld Research Network, KeralaGoogle Scholar
  64. 64.
    Hubaux A, Vos G (1970) Decision and detection limits for calibration curves. Anal Chem 42:849–855CrossRefGoogle Scholar
  65. 65.
    Currie AL (1999) Detection and quantification limits: origins and historical overview. Anal Chim Acta 391:127–134CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Thays Souza Lima
    • 1
  • Mauro A. La-Scalea
    • 1
  • Cristiano Raminelli
    • 1
  • Fábio R. Simões
    • 2
  • Edison FrancoJr
    • 3
  • Gabriela Dias da Silva
    • 3
  • Michele Aparecida Salvador
    • 3
  • Paula Homem-de-Mello
    • 3
  • Hueder P. M. de Oliveira
    • 3
  • Lúcia Codognoto
    • 1
    Email author
  1. 1.Departamento de Química, Instituto de Ciências Ambientais Químicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)DiademaBrazil
  2. 2.Departamento de Ciências do MarUNIFESPSantosBrazil
  3. 3.Universidade Federal do ABC (UFABC)Santo AndréBrazil

Personalised recommendations