Journal of Solid State Electrochemistry

, Volume 23, Issue 2, pp 519–527 | Cite as

Synthesis and electrochemical performance of poly(vinylidene fluoride)/SiO2 hybrid membrane for lithium-ion batteries

  • Yang Xia
  • Jiaojiao Li
  • Hongjie Wang
  • Zhangjun Ye
  • Xiaozheng Zhou
  • Hui Huang
  • Yongping Gan
  • Chu Liang
  • Jun Zhang
  • Wenkui ZhangEmail author
Original Paper


In this work, a series of rationally designed hybrid membranes composed of poly(vinylidene fluoride) (PVDF) as polymer matrix and silica nanoparticles (SiO2) as inorganic fillers are prepared by combining slurry coating method and phase inversion method. The effects of the added SiO2 nanoparticles on the porosity, electrolyte wettability, thermal stability, and ionic conductivity of PVDF/SiO2 hybrid membranes are investigated systematically. Compared to the commercial polypropylene (PP) membrane, PVDF/SiO2 hybrid membranes present enhanced physical and electrochemical performance. Particularly, the incorporation of 5 wt.% SiO2 to PVDF polymer matrix (PVDF5 hybrid membrane) shows the highest ionic conductivity of 1 × 10−3 S cm−1 at 25 °C among all the samples. The electrochemical tests demonstrate that the LiNi0.8Co0.1Mn0.1O2/Li coin cell assembled with PVDF5 hybrid membrane exhibits high reversible discharge capacity (179 mAh g−1 at 0.05 C), excellent cyclic stability (169 mAh g−1 after 100 cycles at 0.1 C), and superior rate performance, which are much better than other counterparts and PP separator. Moreover, as for the large capacity battery application, 1.1 Ah LiNi0.8Co0.1Mn0.1O2/graphite pouch cell with PVDF5 hybrid membrane can deliver a high discharge capacity of 992 mAh and good Coulombic efficiency of 99.5%. Evidently, the optimized PVDF/SiO2 hybrid membrane will be a very promising alternative to the commercial PP separator for advanced lithium-ion batteries.


Poly(vinylidene fluoride) SiO2 Separator Conductivity Lithium-ion battery 


Funding information

Financial supports were from National Natural Science Foundation of China (21403196, 51572240, 51677170 and 51777194) and Natural Science Foundation of Zhejiang Province (LY16E070004, LY17E020010, 2017C01035 and LY18B030008).

Supplementary material

10008_2018_4161_MOESM1_ESM.docx (202 kb)
ESM 1 (DOCX 202 kb)


  1. 1.
    Jung YC, Lee SM, Choi JH, Jang SS, Kim DW (2014) J Electrochem Soc 162:A704–A710CrossRefGoogle Scholar
  2. 2.
    Yoo HD, Markevich E, Salitra G, Sharon D, Aurbach D (2014) Mater Today 17(3):110–121CrossRefGoogle Scholar
  3. 3.
    Larcher D, Tarascon J (2015) Nat Chem 7(1):19–29CrossRefGoogle Scholar
  4. 4.
    Yan D, Zhao Y, Dong Y, Liang Z, Lin X (2016) J Solid State Electrochem 20(2):337–344CrossRefGoogle Scholar
  5. 5.
    Kim SK, Jung YC, Kim DH, Shin WC, Ue M, Kim DW (2016) J Electrochem Soc 163(6):A974–A980CrossRefGoogle Scholar
  6. 6.
    Wang X, Xu G, Wang Q, Lu C, Zong C, Zhang J, Yue L, Cui G (2018) Chin J Chem Eng 26(6):1292–1299CrossRefGoogle Scholar
  7. 7.
    Xiang Y, Li J, Lei J, Liu D, Xie Z, Qu D, Li K, Deng T, Tang H (2016) Chemsuschem 9(21):3023–3039CrossRefGoogle Scholar
  8. 8.
    Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X (2014) Energy Environ Sci 7(12):3857–3886CrossRefGoogle Scholar
  9. 9.
    Feng G, Li Z, Mi L, Zheng J, Feng X, Chen W (2018) J Power Sources 376:177–183CrossRefGoogle Scholar
  10. 10.
    Liu K, Zhuo D, Lee HW, Liu W, Lin D, Lu Y, Cui Y (2017) Adv Mater 29(4):1603987CrossRefGoogle Scholar
  11. 11.
    Radzir NNM, Hanifah SA, Ahmad A, Hassan NH, Bella F (2015) J Solid State Electrochem 19(10):3079–3085CrossRefGoogle Scholar
  12. 12.
    Prabakaran P, Manimuthu RP, Gurusamy S (2017) J Solid State Electrochem 21(5):1273–1285CrossRefGoogle Scholar
  13. 13.
    Jiang C, Li W, Mou F, He X, Li J, Jian G, Deng L, Wang J, Hong C (2014) J Power Sources 246:499–504CrossRefGoogle Scholar
  14. 14.
    Sohn JY, Im JS, Shin J, Nho YC (2012) J Solid State Electrochem 16(2):551–556CrossRefGoogle Scholar
  15. 15.
    Colò F, Bella F, Nair JR, Gerbaldi C (2017) J Power Sources 365:293–302CrossRefGoogle Scholar
  16. 16.
    Wu D, Shi C, Huang S, Qiu X, Wang H, Zhan Z, Zhang P, Zhao J, Sun D, Lin L (2015) Electrochim Acta 176:727–734CrossRefGoogle Scholar
  17. 17.
    Zhang H, Lin CE, Zhou MY, John AE, Zhu BK (2016) Electrochim Acta 187:125–133CrossRefGoogle Scholar
  18. 18.
    Liu L, Wang Z, Zhao Z, Zhao Y, Li F, Yang L (2016) J Solid State Electrochem 20(3):699–712CrossRefGoogle Scholar
  19. 19.
    Xu Q, Kong Q, Liu Z, Wang X, Liu R, Zhang J, Yue L, Duan Y, Cui G (2014) ACS Sustain Chem Eng 2(2):194–199CrossRefGoogle Scholar
  20. 20.
    Faliya K, Kliem H (2018) Electrochim Acta 290:211–219CrossRefGoogle Scholar
  21. 21.
    Suriyakumar S, Gopi S, Kathiresan M, Bose S, Gowd EB, Nair JR, Angulakshmi N, Meligrana G, Bella F, Gerbaldi C, Stephan AM (2018) Electrochim Acta 285:355–364CrossRefGoogle Scholar
  22. 22.
    Bella F, Colo F, Nair JR, Gerbaldi C (2015) ChemSusChem 8(21):3668–3676CrossRefGoogle Scholar
  23. 23.
    Nair JR, Porcarelli L, Bella F, Gerbaldi C (2015) ACS Appl Mater Interfaces 7(23):12961–12971CrossRefGoogle Scholar
  24. 24.
    Zhao Y, Huang Z, Chen S, Chen B, Yang J, Zhang Q, Ding F, Chen Y, Xu X (2016) Solid State Ionics 295:65–71CrossRefGoogle Scholar
  25. 25.
    Cznotka E, Jeschke S, Grünebaum M, Wiemhöfer HD (2016) Solid State Ionics 292:45–51CrossRefGoogle Scholar
  26. 26.
    Bolloli M, Antonelli C, Molméret Y, Alloin F, Iojoiu C, Sanchez JY (2016) Electrochim Acta 214:38–48CrossRefGoogle Scholar
  27. 27.
    Zhu Y, Wang F, Liu L, Xiao S, Chang Z, Wu Y (2013) Energy Environ Sci 6(2):618–624CrossRefGoogle Scholar
  28. 28.
    Song DY, Xu C, Chen YF, He JR, Zhao Y, Li PJ, Lin W, Fu F (2015) Solid State Ionics 282:31–36CrossRefGoogle Scholar
  29. 29.
    Mathew V, Gim J, Alfaruqi MH, Kim S, Song J, Baboo JP, Park S, Kim D, Kim J (2015) J Electrochem Soc 162(7):A1220–A1226CrossRefGoogle Scholar
  30. 30.
    Xie H, Liao Y, Sun P, Chen T, Rao M, Li W (2014) Electrochim Acta 127:327–333CrossRefGoogle Scholar
  31. 31.
    Nho YC, Sohn JY, Shin J, Park JS, Lim YM, Kang PH (2017) Radiation physics. Chemistry 132:65–70Google Scholar
  32. 32.
    Wu D, Deng L, Sun Y, Teh KS, Shi C, Tan Q, Zhao J, Sun D, Lin L (2017) RSC Adv 7(39):24410–24416CrossRefGoogle Scholar
  33. 33.
    Rakibuddin M, Ananthakrishnan R (2016) New J Chem 40(4):3385–3394CrossRefGoogle Scholar
  34. 34.
    Cao J, Wang L, Shang Y, Fang M, Deng L, Gao J, Li J, Chen H, He X (2013) Electrochim Acta 111:674–679CrossRefGoogle Scholar
  35. 35.
    Zhang S, Cao J, Shang Y, Wang L, He X, Li J, Zhao P, Wang Y (2015) J Mater Chem A 3(34):17697–17703CrossRefGoogle Scholar
  36. 36.
    Kang GD, Cao YM (2014) J Membr Sci 463:145–165CrossRefGoogle Scholar
  37. 37.
    Wu YS, Yang CC, Luo SP, Chen YL, Wei CN, Lue SJ (2017) Int J Hydrog Energy 42(10):6862–6875CrossRefGoogle Scholar
  38. 38.
    Liu K, Ding F, Liu J, Zhang Q, Liu X, Zhang J, Xu Q (2016) ACS Appl Mater Interfaces 8(36):23668–23675CrossRefGoogle Scholar
  39. 39.
    Peled E, Duvdevani T, Melman A (1998) Electrochem Solid-State Lett 1:210–211CrossRefGoogle Scholar
  40. 40.
    Barbosa JC, Dias JP, Lanceros-Mendez S, Costa CM (2018) Membranes (Basel) 8(3):45CrossRefGoogle Scholar
  41. 41.
    Hashim NA, Liu Y, Li K (2011) Ind Eng Chem Res 50(5):3035–3040CrossRefGoogle Scholar
  42. 42.
    Yu LY, Xu ZL, Shen HM, Yang H (2009) J Membr Sci 337(1-2):257–265CrossRefGoogle Scholar
  43. 43.
    Fu Q, Lin G, Chen X, Yu Z, Yang R, Li M, Zeng X, Chen J (2018) Energy. Technology 6:144–152Google Scholar
  44. 44.
    Pasquier AD, Warren PC, Culver D, Gozdz AS, Amatucci GG, Tarascon JM (2000) Solid State Ionics 135(1-4):249–257CrossRefGoogle Scholar
  45. 45.
    Knoche T, Lund R, Prymak O, Epple M, Ulbricht M (2016) Mater Today Commun 8:23–30CrossRefGoogle Scholar
  46. 46.
    Zhang L, Wang H, Wang L, Cao Y (2018) Appl Surf Sci 450:461–467CrossRefGoogle Scholar
  47. 47.
    Yang J, Xia Y (2015) ACS Appl Mater Interfaces 8:1297–1308CrossRefGoogle Scholar
  48. 48.
    Xiong X, Wang Z, Guo H, Zhang Q, Li X (2012) J Mater Chem A 1:1284–1288CrossRefGoogle Scholar
  49. 49.
    Kumar PS, Sakunthala A, Reddy MV, Shanmugam S, Prabu M (2016) J Solid State Electrochem 20(7):1865–1876CrossRefGoogle Scholar
  50. 50.
    Zhou F, Xu L, Kong J (2018) J Solid State Electrochem 22(3):943–952CrossRefGoogle Scholar
  51. 51.
    Xia Y, Zhong H, Fang R, Liang C, Xiao Z, Huang H, Gan Y, Zhang J, Tao X, Zhang W (2018) J Power Sources 378:73–80CrossRefGoogle Scholar
  52. 52.
    Zhong H, Sun M, Li Y, He J, Yang J, Zhang L (2016) J Solid State Electrochem 20(1):1–8CrossRefGoogle Scholar
  53. 53.
    Xiong X, Ding D, Wang Z, Huang B, Guo H, Li X (2014) J Solid State Electrochem 18(9):2619–2624CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yang Xia
    • 1
  • Jiaojiao Li
    • 1
  • Hongjie Wang
    • 2
  • Zhangjun Ye
    • 2
  • Xiaozheng Zhou
    • 2
  • Hui Huang
    • 1
  • Yongping Gan
    • 1
  • Chu Liang
    • 1
  • Jun Zhang
    • 1
  • Wenkui Zhang
    • 1
    Email author
  1. 1.College of Materials Science and EngineeringZhejiang University of TechnologyHangzhouChina
  2. 2.Zhejiang Godsend Power Technology Co., LtdHangzhouChina

Personalised recommendations