Journal of Solid State Electrochemistry

, Volume 23, Issue 2, pp 607–613 | Cite as

Surface modification of hollow microsphere Li1.2Ni1/3Co1/3Mn1/3O2 cathode by coating with CoAl2O4

  • Mingning Chang
  • He Wang
  • Yonglei Zheng
  • Ningning Li
  • Siheng Chen
  • Yong Wan
  • Feng Yuan
  • Weiquan Shao
  • Sheng XuEmail author
Original Paper


Li1.2Ni1/3Co1/3Mn1/3O2 was synthesized as a cathode material for lithium-ion batteries and coated with various amounts of CoAl2O4 (0–5 wt%) at high temperature. The effect of the surface modification on the structure and electrochemical performance of the cathode was evaluated. Microstructural analysis using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy revealed that the CoAl2O4 coating did not affect the crystal structure of the electrode material and that the coating only appeared on the electrode surface. The effect of the CoAl2O4 coating on the electrochemical performance was evaluated by examining charge-discharge cycles, rate performance, and electrochemical impedance. The cathodes coated with CoAl2O4 exhibited improved discharge capacity and cyclic performance compared with those of the uncoated cathode. The electrode coated with 2.5 wt% CoAl2O4 exhibited the highest discharge capacity (202.5 mAhg−1 vs. 185 mAhg−1 for the uncoated material) and highest capacity retention (84.8% for 50 cycles vs. 78.6% for the uncoated material).


Lithium-ion battery Cathode material Li-rich Hollow microspheres Sol-gel method CoAl2O4 surface modification 



  1. 1.
    Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195(4):939–954CrossRefGoogle Scholar
  2. 2.
    Kulova TL (2013) New electrode materials for lithium-ion batteries (review). Russ J Electrochem 49(1):1–25CrossRefGoogle Scholar
  3. 3.
    Blomgren GE (2017) The development and future of lithium ion batteries. J Electrochem Soc 164(1):A5019–A5025CrossRefGoogle Scholar
  4. 4.
    Geng PB, Zheng SS, Tang H, Zhu RM, Zhang L, Cao S, Xue HG, Pang H (2018) Transition metal sulfides based on graphene for electrochemical energy storage. Adv Energy Mater 8(15):1703259CrossRefGoogle Scholar
  5. 5.
    Ma JY, Guo XT, Yan Y, Xue HG, Pang H (2018) FeOx-based materials for electrochemical energy storage. Adv Sci 5:1700986CrossRefGoogle Scholar
  6. 6.
    Lu CH, Yeh PY (2002) Microstructural development and electrochemical characteristics of lithium cobalt oxide powders prepared by the water-in-oil emulsion process. J Eur Ceram Soc 22(5):673–679CrossRefGoogle Scholar
  7. 7.
    Shaju KM, Subba Rao GV, Chowdari BVR (2002) Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries. Electrochim Acta 48(2):145–151CrossRefGoogle Scholar
  8. 8.
    Li C, Zhang HP, Fu LJ, Liu H, Wu YP, Ram E, Holze R, Wu HQ (2006) Cathode materials modified by surface coating for lithium ion batteries. Electrochim Acta 51(19):3872–3883CrossRefGoogle Scholar
  9. 9.
    Kobayashi H, Okumura T, Shikano M, Takada K, Arachi Y, Nitani H (2014) The effects of Al2O3 coating on the performance of layered Li1.20Mn0.55Ni0.16Co0.09O2 materials for lithium-ion rechargeable battery. Solid State Ionics 262:43–48CrossRefGoogle Scholar
  10. 10.
    Cho W, Kim SM, Song JH, Yim T, Woo SG, Lee KW, Kim JS, Kim YJ (2015) Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating. J Power Sources 282:45–50CrossRefGoogle Scholar
  11. 11.
    Zheng JM, Li J, Zhang ZR, Guo XJ, Yang Y (2008) The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery. Solid State Ionics 179:1794–1799CrossRefGoogle Scholar
  12. 12.
    Shi SJ, Tu JP, Tang YY, Liu XY, Zhang YQ, Wang XL, Gu CD (2013) Enhanced cycling stability of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification of MgO with melting impregnation method. Electrochim Acta 88:671–679CrossRefGoogle Scholar
  13. 13.
    Liu XY, Huang T, Yu AS (2015) Surface phase transformation and CaF2 coating for enhanced electrochemical performance of Li-rich Mn-based cathodes. Electrochim Acta 163:82–92CrossRefGoogle Scholar
  14. 14.
    Wu F, Zhang XX, Zhao TL, Li L, Xie M, Chen RJ (2015) Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries. ACS Appl Mater Interfaces 7(6):3773–3781CrossRefGoogle Scholar
  15. 15.
    Liu YJ, Zhang ZQ, Fu YB, Wang QL, Pan J, Su MR, Battaglia VS (2016) Investigation the electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathode material with ZnAl2O4 coating for lithium ion batteries. J Alloys Compd 685:523–532CrossRefGoogle Scholar
  16. 16.
    Anicete-Santos M, Gracia L, BeltrÁ A, Andres J, Varela JA, Longo E (2008) Intercalation processes and diffusion paths of lithium ions in spinel-type structured Li1+xTi2O4: density functional theory study. Phys Rev B 77:439–446CrossRefGoogle Scholar
  17. 17.
    Mindru I, Marinescu G, Gingasu D, Patron L, Ghica C, Giurginca M (2010) Blue CoAl2O4 spinel via complexation method. Mater Chem Phys 122:491–497CrossRefGoogle Scholar
  18. 18.
    Matveeva NG, Shelykh AI (2010) The electrical properties of the single crystal spinel CoAl2O4. Phys Status Solidi B 50:83–86CrossRefGoogle Scholar
  19. 19.
    Chen JJ, Li ZD, Xiang HF, Wu WW, Guo X, Wu YC (2015) Bifunctional effects of carbon coating on high-capacity Li1.2Ni0.13Co0.13Mn0.54O2 cathode for lithium-ion batteries. J Solid State Electrochem 19(4):1027–1035CrossRefGoogle Scholar
  20. 20.
    Fei JB, Cui Y, Yan XH, Qi W, Yang Y, Wang KW, He Q, Li JB (2010) Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment. Adv Mater 20:452–456CrossRefGoogle Scholar
  21. 21.
    Chang Q, Zhang H, Wang XJ, Shao WQ, Li HL, Yuan F, Xu XG, Xu S (2015) Structure and electrochemical performance of hollow microspheres of LiFexNi1/3-xCo1/3Mn1/3O2 (0.000 ≤ x ≤ 0.267) as cathodes for lithium-ion batteries. RSC Adv 5(69):56274–56278CrossRefGoogle Scholar
  22. 22.
    Izumi F, Momma K (2007) Three-dimensional visualization in powder diffraction. Solid State Phenom 130:15–20CrossRefGoogle Scholar
  23. 23.
    Li Y, Xu Y, Yang W, Shen W, Xue H, Pang H (2018) MOF-derived metal oxide composites for advanced electrochemical energy storage. Small 14(25):1704435CrossRefGoogle Scholar
  24. 24.
    Shannon RD (2015) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mingning Chang
    • 1
  • He Wang
    • 1
  • Yonglei Zheng
    • 1
  • Ningning Li
    • 1
  • Siheng Chen
    • 1
  • Yong Wan
    • 1
  • Feng Yuan
    • 1
  • Weiquan Shao
    • 1
  • Sheng Xu
    • 1
    Email author
  1. 1.College of PhysicsQingdao UniversityQingdaoChina

Personalised recommendations