A comment on the need to distinguish between cell and electrode impedances

  • Lijun Fu
  • Qunting Qu
  • Rudolf HolzeEmail author
  • Yuping WuEmail author
Original Paper


The frequently overlooked elementary difference between electrode and cell impedance in studies of batteries and supercapacitors is discussed; effects on data interpretation and possible remedies are presented.


Electrode impedance Cell impedance 



Preparation of this communication has been supported in various ways by the Alexander von Humboldt-Foundation, Deutscher Akademischer Austauschdienst, Fonds der Chemischen Industrie, Deutsche Forschungsgemeinschaft, National Basic Research Program of China, and National Materials Genome Project (2016YFB0700600), National Natural Science Foundation of China (51502137, U1601214, 51772147 and distinguished youth scientist of 51425301), and Jiangsu Distinguished Professorship Program (2016). Financial support within a research project at St. Petersburg State University supported by grant № 26455158 is gratefully acknowledged.


  1. 1.
    Lasia A (2014) Electrochemical impedance spectroscopy and its applications. Springer, New YorkCrossRefGoogle Scholar
  2. 2.
    Yuan X-Z, Song C, Wang H, Zhang J (2010) Electrochemical impedance spectroscopy in PEM fuel cells. Springer, LondonCrossRefGoogle Scholar
  3. 3.
    Orazem ME, Tribollet B (2017) Electrochemical impedance spectroscopy, 2nd edn. Wiley, HobokenCrossRefGoogle Scholar
  4. 4.
    Holze R (1994) Electrode impedance measurements: a versatile tool for electrochemists. Bull Electrochem 10:56–67Google Scholar
  5. 5.
    Barsoukov E, Macdonald JR (2005) Impedance spectroscopy. WILEY-Interscience, Hoboken, USACrossRefGoogle Scholar
  6. 6.
    Trasatti S, Petrii OE (1992) Real surface-area measurements in electrochemistry. J Electroanal Chem 327(1-2):353–376CrossRefGoogle Scholar
  7. 7.
    Trasatti S, Petrii OE (1991) Real surface-area measurements in electrochemistry. Pure&Appl Chem 63(5):711–734CrossRefGoogle Scholar
  8. 8.
    Watt-Smith MJ, Friedrich JM, Rigby SP, Ralph TR, Walsh FC (2008) Determination of the electrochemically active surface area of Pt/C PEM fuel cell electrodes using different adsorbates. J Phys D Appl Phys 41:74004–74004CrossRefGoogle Scholar
  9. 9.
    Binninger T, Fabbri E, Kötz R, Schmidt TJ (2014) Determination of the electrochemically active surface area of metal-oxide supported platinum catalyst. J Electrochem Soc 161(3):H121–H128CrossRefGoogle Scholar
  10. 10.
    Ganassin A, Maljusch A, Colic V, Spanier L, Brandl K, Schuhmann W, Bandarenka A (2016) Benchmark-ing the performance of thin-film oxide electrocatalysts for gas evolution reactions at high current densities. ACS Catal 6(5):3017–3024CrossRefGoogle Scholar
  11. 11.
    Maksimov YM, Podlovchenko BI (2017) Use of silver adatoms for the determination of the electrochemi-cally active surface area of polycrystalline gold. Mendel Commun 27(1):64–66CrossRefGoogle Scholar
  12. 12.
    Watzele S, Bandarenka AS (2016) Quick determination of electroactive surface area of some oxide electrode materials. Electroanalysis 28(10):2394–2399CrossRefGoogle Scholar
  13. 13.
    Wiberg GKH, Mayrhofer KJJ, Arenz M (2010) Investigation of the oxygen reduction activity on silver – a rotating disc electrode study. Fuel Cells 10(4):575–581CrossRefGoogle Scholar
  14. 14.
    Euler J (1961) Porendimensionen und Oberflächen-Kapazität von Braunstein. Electrochim Acta 4(1):27–41CrossRefGoogle Scholar
  15. 15.
    Keiser H, Beccu KD, Gutjahr MA (1976) Abschätzung der Porenstruktur Poröser Elektroden aus Impedanzmessungen. Electrochim Acta 21(8):539–543CrossRefGoogle Scholar
  16. 16.
    Holze R (1983) PhD-dissertation. Universität BonnGoogle Scholar
  17. 17.
    Göhr H, Schiller C-A (1986) Faraday-Impedanz als Verknüpfung von Impedanzelementen. Z Physik Chemie 148(1):105–124CrossRefGoogle Scholar
  18. 18.
    Amirudin A, Thierry D (1995) Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals. Prog Org Coat 26(1):1–28CrossRefGoogle Scholar
  19. 19.
    Göhr H (1981) Über Beiträge einzelner Elektrodenprozesse zur Impedanz. Ber Bunsenges Phys Chem 85(4):274–280CrossRefGoogle Scholar
  20. 20.
    Shi J, Sun W (2011) Equivalent circuits fitting of electrochemical impedance spectroscopy for corrosion of reinforcing steel in concrete. Corr Sci Prot Technol 23:387–392Google Scholar
  21. 21.
    Katayama H (2014) Surface and interfacial analysis using electrochemical impedance measurement. J Japan Inst Met 78(11):419–425CrossRefGoogle Scholar
  22. 22.
    Talian SD, Bester-Rogac M, Dominko R (2017) The physicochemical properties of a [DEME][TFSI] ionic liquid-based electrolyte and their influence on the performance of lithium-sulfur batteries. Electrochim Acta 252:147–153CrossRefGoogle Scholar
  23. 23.
    Niya SMR, Hoorfa M (2016) On a possible physical origin of the constant phase element. Electrochim Acta 188:98–102CrossRefGoogle Scholar
  24. 24.
    Fournier J, Miousse D, Brossard L, Menard H (1995) Characterization by ac impedance spectroscopy of highly oriented pyrolytic graphite surfaces modified by argon plasma etching. Mater Chem Phys 42(3):181–187CrossRefGoogle Scholar
  25. 25.
    Bidoia ED, Bulhoes LOS, Rocha-Filho RC (1994) Pt/HClO4 Interface CPE: influence of surface roughness and electrolyte concentration. Electrochim Acta 39(5):763–769CrossRefGoogle Scholar
  26. 26.
    Wang YB, Yuan RK, Yuan H, Chen ZH (1993) Theoretical and experimental studies of conducting polymer polyaniline electrolyte Interface by impedance spectroscopy. Synth Met 55:1501–1508CrossRefGoogle Scholar
  27. 27.
    Pajkossy T (1991) Electrochemistry at fractal surfaces. J Electroanal Chem 300(1-2):1–11CrossRefGoogle Scholar
  28. 28.
    Lukacs Z (1999) Evaluation of model and dispersion parameters and their effects on the formation of constant-phase elements in equivalent circuits. J Electroanal Chem 464(1):68–75CrossRefGoogle Scholar
  29. 29.
    Fawcett WR, Kovacova Z, Motheo AJ, Foss CA (1992) Application of the AC admittance technique to double-layer studies on polycrystalline gold electrodes. J Electroanal Chem 326(1-2):91–103CrossRefGoogle Scholar
  30. 30.
    Córdoba-Torres P, Mesquita TJ, Nogueira RP (2015) Relationship between the origin of constant-phase element behavior in electrochemical impedance spectroscopy and electrode surface structure. J Phys Chem C119:4135–4147Google Scholar
  31. 31.
    Burashnikova MM, Kazarinov IA, Zotova IV (2012) Nature of contact corrosion layers on lead alloys: a study by impedance spectroscopy. J Power Sources 207:19–29CrossRefGoogle Scholar
  32. 32.
    Lang G, Heusler KE (1995) Changes of the specific surface energy of gold due to the chemisorption of sulphate. J Electroanal Chem 391(1-2):169–179CrossRefGoogle Scholar
  33. 33.
    Lang G, Heusler KE (1998) Remarks on the energetics of interfaces exhibiting constant phase element behaviour. J Electroanal Chem 457(1-2):257–260CrossRefGoogle Scholar
  34. 34.
    Pajkossy T, Wandlowski T, Kolb DM (1996) Impedance aspects of anion adsorption on gold single crystal electrodes. J Electroanal Chem 414:209–220Google Scholar
  35. 35.
    Hirschorn B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musiani M (2010) Constant-phase-element behavior caused by resistivity distributions in films I. Theory J Electrochem Soc 157(12):C452–C457CrossRefGoogle Scholar
  36. 36.
    Musiani M, Orazem ME, Pébère N, Tribollet B, Vivier V (2011) Constant-phase-element behavior caused by coupled resistivity and permittivity distributions in films. J Electrochem Soc 158(12):C424–C428CrossRefGoogle Scholar
  37. 37.
    Brug GJ, Van Den Eeden ALG, Sluyters-Rehbach M, Sluyters JH (1984) The analysis of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem 176(1-2):275–295CrossRefGoogle Scholar
  38. 38.
  39. 39.
    Wabner DW, Holze R, Schmittinger P (1984) Impedance of an oxygen reducing gas diffusion electrode. Z Naturf B 39(2):157–162CrossRefGoogle Scholar
  40. 40.
  41. 41.
    Solchenbach S, Pritzl D, Kong EJY, Landesfeind J, Gasteiger HA (2016) A gold micro-reference electrode for impedance and potential measurements in Lithium ion batteries. J Electrochem Soc 163(10):A2265–A2272CrossRefGoogle Scholar
  42. 42.
    Ender M, Illig J, Ivers-Tiffee E (2017) Three-electrode setups for Lithium-ion batteries I fem-simulation of different reference electrode designs and their implications for half-cell impedance spectra. J Electrochem Soc 164:A71–A79CrossRefGoogle Scholar
  43. 43.
    Costard J, Ender M, Weiss M, Ivers-Tiffee E (2017) Three-electrode setups for Lithium-ion batteries II experimental study of different reference electrode designs and their implications for half-cell impedance spectra. J Electrochem Soc 164:A80–A87CrossRefGoogle Scholar
  44. 44.
    Levi MD, Dargel V, Shilina Y, Aurbach D, Halalay IC (2014) Impedance spectra of energy-storage electrodes obtained with commercial three-electrode cells: some sources of measurement artefacts. Electrochim Acta 149:126–135CrossRefGoogle Scholar
  45. 45.
    Rodrigues S, Munichandraiah N, Shukla AK (2000) A review of state-of-charge indication of batteries by means of a.c. impedance measurements. J Power Sources 87(1-2):12–20CrossRefGoogle Scholar
  46. 46.
    Liu Y, Gao S, Holze R, Shukla AK (2017) The cadmium electrode revisited: kinetic data. J Electrochem Soc 164(14):A3858–A3861CrossRefGoogle Scholar
  47. 47.
    Illig J, Ender M, Chrobak T, Schmidt JP, Klotz D, Ivers-Tiffee E (2012) Separation of charge transfer and contact resistance in LiFePO4-cathodes by impedance modeling. J Electrochem Soc 159(7):A952–A960CrossRefGoogle Scholar
  48. 48.
    Randles JEB (1947) Kinetics of rapid electrode reactions. Faraday Discuss 1:11–19CrossRefGoogle Scholar
  49. 49.
    Jovic VD, Determination of the correct value of C dl from the impedance results fitted by the commercially available software.; see also:
  50. 50.
    Liu Y, Wiek A, Dzhagan V, Holze R (2016) Improved electrochemical behavior of amorphous carbon-coated copper/CNT composites as negative electrode material and their energy storage mechanism. J Electrochem Soc 163(7):A1247–A1253CrossRefGoogle Scholar
  51. 51.
    Yan J, Fan ZJ, Wei T, Qian WZ, Zhang ML, Wei F (2010) Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon 48(13):3825–3833Google Scholar
  52. 52.
    Wabner D, Schmittinger P (1973) Metalloberfläche, Kritische Gedanken zur Analyse von Impedanzspektren für die Kinetik von Elektrodenvorgängen. Angew Elektrochemie 26:268–272Google Scholar
  53. 53.
    Orazem ME, Agarwal P, Garcia-Rubio LH (1994) Critical issues associated with interpretation of impedance spectra. J Electroanal Chem 378(1-2):51–62CrossRefGoogle Scholar
  54. 54.
    Holze R, Landolt-Börnstein (2007) In: Martienssen W, Lechner MD (eds) Numerical data and functional relationships in science and technology, new series, group iv: physical chemistry, volume 9: electrochemistry, subvolume a: electrochemical thermodynamics and kinetics. Springer-Verlag, BerlinGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Energy and Institute for Advanced MaterialsNanjing Tech UniversityNanjingChina
  2. 2.College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow UniversitySuzhouPeople’s Republic of China
  3. 3.Institut für Chemie, AG ElektrochemieTechnische Universität ChemnitzChemnitzGermany
  4. 4.Institute of ChemistrySaint Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations