Journal of Solid State Electrochemistry

, Volume 23, Issue 2, pp 455–463 | Cite as

Study of degradation of Na2Тi3O7-based electrode during cycling

  • T. L. KulovaEmail author
  • Y. O. Kudryashova
  • A. A. Kuz’mina
  • A. M. Skundin
  • I. A. Stenina
  • A. A. Chekannikov
  • A. B. Yaroslavtsev
  • J. Libich
Original Paper


The degradation of electrodes based on sodium titanate (Na2Ti3O7) was studied using the methods of galvanostatic cycling, cyclic voltammetry, Raman spectroscopy, and electrochemical impedance spectroscopy. It is established that during the cycling, there is splitting of sodium titanate intergrown plates and constant growth of solid electrolyte interface on the surface of Na2Ti3O7 particles. These factors account for the degradation of Na2Ti3O7 at cycling.


Sodium-ion battery Sodium titanate Degradation Cycling 


Funding information

This study received support from the Russian Science Foundation, project no. 16-13-00024.


  1. 1.
    Senguttuvan P, Rousse G, Seznec V, Tarascon J-M, Palacín MR (2011) Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem Mater 23(18):4109–4111CrossRefGoogle Scholar
  2. 2.
    Zhao L, Qi L, Wang H (2013) Sodium titanate nanotube/graphite, an electric energy storage device using Na+-based organic electrolytes. J Power Sources 242:597–603CrossRefGoogle Scholar
  3. 3.
    Liu J, Banis MN, Xiao B, Sun Q, Lushington A, Li R, Guo J, Sham T-K, Sun X (2015) Atomically precise growth of sodium titanates as anode materials for high-rate and ultralong cycle-life sodium-ion batteries. J Mater Chem A 3(48):24281–24288CrossRefGoogle Scholar
  4. 4.
    Skundin AM, Kulova TL, Yaroslavtsev AB (2018) Sodium-ion batteries (a review). Russ J Electrochem 54(2):113–152CrossRefGoogle Scholar
  5. 5.
    Nava-Avendaño J, Morales-García A, Ponrouch A, Rousse G, Frontera C, Senguttuvan P, Tarascon J-M, Arroyo-de Dompablo ME, Palacín MR (2015) Taking steps forward in understanding the electrochemical behavior of Na2Ti3O7. J Mater Chem A 3(44):22280–22288CrossRefGoogle Scholar
  6. 6.
    Pan H, Lu X, Yu X, Hu Y-S, Li H, Yang X-Q, Chen L (2013) Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries. Adv Energy Mater 3(9):1186–1194CrossRefGoogle Scholar
  7. 7.
    Nie S, Liu L, Li M, Liu J, Xia J, Zhang Y, Wang X (2018) Na2Ti3O7/C nanofibers for high-rate and ultralong-life anodes in sodium-ion batteries. Chem Electro Chem 5:1–9Google Scholar
  8. 8.
    Xu J, Ma C, Balasubramanian M, Meng YS (2014) Understanding Na2Ti3O7 as an ultra-low voltage anode material for a Na-ion battery. Chem Commun 50(83):12564–12567CrossRefGoogle Scholar
  9. 9.
    Rudola A, Saravanan K, Masona CW, Balaya P (2013) Na2Ti3O7: an intercalation based anode for sodium-ion battery applications. J Mater Chem A 1(7):2653–2662CrossRefGoogle Scholar
  10. 10.
    Zou W, Li J, Deng Q, Xue J, Dai X, Zhou A, Li J (2014) Microspherical Na2Ti3O7 prepared by spray-drying method as anode material for sodium-ion battery. Solid State Ionics 262:192–196CrossRefGoogle Scholar
  11. 11.
    Wang W, Yu C, Liu Y, Hou J, Zhu H, Jiao S (2013) Single crystalline Na2Ti3O7 rods as an anode material for sodium-ion batteries. RSC Adv 3(4):1041–1044CrossRefGoogle Scholar
  12. 12.
    Stenina IA, Kulova TL, Skundin AM, Yaroslavtsev AB (2016) High grain boundary density Li4Ti5O12/anatase-TiO2 nanocomposites as anode material for Li-ion batteries. Mater Res Bull 75:178–184CrossRefGoogle Scholar
  13. 13.
    Stenina IA, Il’in AB, Yaroslavtsev AB (2015) Synthesis and ionic conductivity of Li4Ti5O12. Inorg Mater 51(1):62–67CrossRefGoogle Scholar
  14. 14.
    Xie M, Wang K, Chen R, Li Li WF (2015) A facile route to synthesize sheet-like Na2Ti3O7 with improved sodium storage properties. Chem Res Chin Univ 31(3):443–446CrossRefGoogle Scholar
  15. 15.
    Muñoz-Márquez MA, Zarrabeitia M, Castillo-Martínez E, Eguía-Barrio A, Rojo T, Casas-Cabanas M (2015) Composition and evolution of the solid-electrolyte interphase in Na2Ti3O7 electrodes for Na-ion batteries: XPS and auger parameter analysis. ACS Appl Mater Interfaces 7(14):7801–7808CrossRefGoogle Scholar
  16. 16.
    Zhang Y, Guo L, Yang S (2014) Three-dimensional spider-web architecture assembled from Na2Ti3O7 nanotubes as a high performance anode for a sodium-ion battery. Chem Commun 50(90):14029–14032CrossRefGoogle Scholar
  17. 17.
    Safronov DV, Pinus IY, Profatilova IA, Tarnopol’skii VA, Skundin AM, Yaroslavtsev AB (2011) Kinetics of lithium deintercalation from LiFePO4. Inorg Mater 47(3):303–307CrossRefGoogle Scholar
  18. 18.
    Safronov DV, Novikova SA, Skundin AM, Yaroslavtsev AB (2012) Lithium intercalation and deintercalation processes in Li4Ti5O12 and LiFePO4. Inorg Mater 48(1):57–61CrossRefGoogle Scholar
  19. 19.
    Kulova TL, Skundin AM (2006) Balance between reversible and irreversible processes during lithium intercalation in graphite. Russ J Electrochem 42(3):251–258CrossRefGoogle Scholar
  20. 20.
    Yan Z, Liu L, Shu H, Yang X, Wang H, Tan J, Zhou Q, Huang Z, Wang X (2015) A tightly integrated sodium titanate-carbon composite as an anode material for rechargeable sodium ion batteries. J Power Sources 274:8–14CrossRefGoogle Scholar
  21. 21.
    e Silva FLR, Filho AAA, da Silva MB, Balzuweit K, Bantignies J-L, Caetano EWS, Moreira RL, Freire VN, Righi A (2018) Polarized Raman, FTIR, and DFT study of Na2Ti3O7 microcrystals. J Raman Spectrosc 49(3):538–548CrossRefGoogle Scholar
  22. 22.
    Cvjetićanin ND, Šašić S (2000) Raman spectroscopic study of lithium and sodium perchlorate association in propylene carbonate–water mixed solvents. J Raman Spectrosc 31(10):871–876CrossRefGoogle Scholar
  23. 23.
    Ivanishchev A, Churikov A, Ivanishcheva I, Ushakov A (2016) Lithium diffusion in Li3V2(PO4)3-based electrodes: a joint analysis of electrochemical impedance, cyclic voltammetry, pulse chronoamperometry, and chronopotentiometry data. Ionics 22(4):483–501CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • T. L. Kulova
    • 1
    Email author
  • Y. O. Kudryashova
    • 1
    • 2
  • A. A. Kuz’mina
    • 1
  • A. M. Skundin
    • 1
  • I. A. Stenina
    • 3
  • A. A. Chekannikov
    • 4
  • A. B. Yaroslavtsev
    • 3
  • J. Libich
    • 5
  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of SciencesMoscowRussia
  2. 2.National Research University “Moscow Power Engineering Institute”MoscowRussia
  3. 3.Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of SciencesMoscowRussia
  4. 4.Skolkovo Institute of Science and TechnologiesMoscowRussia
  5. 5.Faculty of Electrical Engineering and Communication (FEEC), Department of Electrical and Electronic Technology (UETE)University of TechnologyBrnoCzech Republic

Personalised recommendations