Journal of Solid State Electrochemistry

, Volume 23, Issue 2, pp 465–473 | Cite as

Enhancement of Nb-doping on the properties of LiFePO4/C prepared via a high-temperature ball milling–based method

  • Xuetian Li
  • Zhongbao ShaoEmail author
  • Kuiren Liu
  • Qing Zhao
  • Guangfu Liu
  • Binshi Xu
Original Paper


Li1-xNbxFePO4/C has been prepared by wet mechanical stirring–assisted high-temperature ball milling route. Wet mechanical stirring was considered to be effective to promote the dispersion of the precursor in solution. Effect of Nb-doping amount was explored for enhancing the properties of LiFePO4/C. The experimental results showed that Li0.98Nb0.02FePO4/C displayed a well-crystallized structure of LiFePO4 and excellent electrochemical performance. It exhibited that the initial discharge capacities were 164.9 mAhg−1 at 0.1 C and 118.8 mAhg−1 at a rate of 10 C, respectively. Moreover, it achieved a specific capacity of 114.3 mAhg−1 at a 10 C rate after 200 cycles with a capacity fading rate of 3.8%. Thus, Nb-doping is recommended as a beneficial technique to improve the electrochemical properties of LiFePO4.


LiFePO4 Nb-doping Wet mechanical stirring High-temperature ball milling route Electrochemical property 


Funding information

This work was supported by the National Natural Science Foundation of China (No. 51704068) and the China Postdoctoral Science Foundation (No. 2017M610184).


  1. 1.
    Pasquier A, Plitz I, Menocal S, Amatucci G (2003) A comparative study of Li-ion battery, super capacitor and non-aqueous asymmetric hybrid devices for automotive applications. J Power Sources 115(1):171–178CrossRefGoogle Scholar
  2. 2.
    Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194CrossRefGoogle Scholar
  3. 3.
    Padhi AK, Naanjundaswamy KS, Masquelier C (1997) Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electrochem Soc 144(5):1609–1613CrossRefGoogle Scholar
  4. 4.
    Prosini PP, Lisi M, Scaccia S (2002) Characterization of amorphous hydrated LiFePO4 and its electrode performance in lithium batteries. J Electrochem Soc 149(3):A297–A301CrossRefGoogle Scholar
  5. 5.
    Zhi X, Liang G, Wang L (2009) The cycling performance of LiFePO4/C cathode materials. J Power Sources 189(1):779–782CrossRefGoogle Scholar
  6. 6.
    Park M, Zhang XC, Chung MD, Less GB, Sastry AM (2010) A review of conduction phenomena in Li-ion batteries. J Power Sources 195(24):7904–7929CrossRefGoogle Scholar
  7. 7.
    Takahashi M, Tobishima S, Takei K, Sakurai Y (2002) Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries. Solid State Ionics 148(3-4):283–289CrossRefGoogle Scholar
  8. 8.
    Zhao NN, Li YS, Zhao XX, Zhi XK, Liang GC (2016) Effect of particle size and purity on the low temperature electrochemical performance of LiFePO4/C cathode material. J Alloys Compd 683:123–132CrossRefGoogle Scholar
  9. 9.
    Saravanan KR, Balaya P, Reddy MV, Chowdari BVR, Vittal JJ (2010) Morphology controlled synthesis of LiFePO4/C nanoplates for li-ion batteries. Energy Environ Sci 3(4):457–463CrossRefGoogle Scholar
  10. 10.
    Huang Z, Luo PF, Wang DX (2017) Preparation and characterization of core-shell structured LiFePO4/C composite using a novel carbon source for lithium-ion battery cathode. J Phys Chem Solids 102:115–120CrossRefGoogle Scholar
  11. 11.
    Mathew V, Gim J, Kim E, Song J, Ahn D, Im WB, Paik Y, Kim J (2014) A rapid polyol combustion strategy towards scalable synthesis of nanostructured LiFePO4/C cathodes for Li-ion batteries. J Solid State Electrochem 18(6):1557–1567CrossRefGoogle Scholar
  12. 12.
    Sun CS, Zhou Z, Xu ZG, Wang DG, Wei JP, Bian XK, Yan J (2009) Improved high-rate charge/discharge performances of LiFePO4/C via V-doping. J Power Sources 193(2):841–845CrossRefGoogle Scholar
  13. 13.
    Liu HC, Wang YM, Hsieh CC (2017) Optimized synthesis of cu-doped LiFePO4/C cathode material by an ethylene glycol assisted co-precipitation method. Ceram Int 43(3):3196–3201CrossRefGoogle Scholar
  14. 14.
    Zhang CH, Liang YZ, Yao L, Qiu YP (2015) Effect of thermal treatment on the properties of electrospun LiFePO4-carbon nanofiber composite cathode materials for lithium-ion batteries. J Alloys Compd 627:91–100CrossRefGoogle Scholar
  15. 15.
    Fang X, Li J, Huang K, Liu S, Huang C, Zhuang S, Zhang J (2012) Synthesis and electrochemical properties of K-doped LiFePO4/C composite as cathode material for lithium-ion batteries. J Solid State Electrochem 16(2):767–773CrossRefGoogle Scholar
  16. 16.
    Sun CS, Zhang Y, Zhang XJ, Zhou Z (2010) Structural and electrochemical properties of Cl-doped LiFePO4/C. J Power Sources 195(11):3680–3683CrossRefGoogle Scholar
  17. 17.
    Ma ZP, Shao GJ, Wang GL, Zhang Y, Du JP (2014) Effects of Nb-doped on the structure and electrochemical performance of LiFePO4/C composites. J Solid State Chem 210(1):232–237CrossRefGoogle Scholar
  18. 18.
    Li X, Shao Z, Liu K, Zhao Q, Liu G, Xu B (2018) Effect of F-doping on the properties of LiFePO4-x/3Fx/C cathode materials via wet mechanical agitation-assisted high-temperature ball milling method. J Solid State Electrochem 22(9):2837–2843CrossRefGoogle Scholar
  19. 19.
    Zhao Q, Shao ZB, Liu CJ, Jiang MF, Li XT, Zevenhoven R, Henrik S (2014) Preparation of Cu-Cr alloy powder by mechanical alloying. J Alloys Compd 607:118–124CrossRefGoogle Scholar
  20. 20.
    Li X, Shao Z, Liu K, Zhao Q, Liu G, Xu B (2017) Influence of Li:Fe molar ratio on the performance of the LiFePO4/C prepared by high temperature ball milling method. J Electroanal Chem 801:368–372CrossRefGoogle Scholar
  21. 21.
    Li X, Shao Z, Liu K, Zhao Q, Liu G, Xu B (2017) Influence of synthesis method on the performance of the LiFePO4/C cathode material. Colloids Surf A Physicochem Eng Asp 529:850–855CrossRefGoogle Scholar
  22. 22.
    Jia LY, Shao ZB, LüQ TYW, Han JF (2014) Preparation of red-emitting phosphor (Y, Gd) BO3: EU 3+ by high temperature ball milling. Ceram Int 40(1):739–743CrossRefGoogle Scholar
  23. 23.
    Zhang P, Zhang D, Huang L, Hui W, Wei Q, Song S (2013) First-principles study of electronic structure of Nb-doped LiFePO4. Rare Metal Mat Eng 42:718–723Google Scholar
  24. 24.
    Talebi-Esfandarani M, Savadogo O (2014) Synthesis and characterization of Pt-doped LiFePO4/C composites using the sol–gel method as the cathode material in lithium-ion batteries. J Appl Electrochem 44(5):555–562CrossRefGoogle Scholar
  25. 25.
    Talebi-Esfandarani M, Savadogo O (2014) Effects of palladium doping on the structure and electrochemical properties of LiFePO4/C prepared using the sol-gel method. J New Mat Electrochem Systems 17(2):91–97CrossRefGoogle Scholar
  26. 26.
    Mangang M, Seifert HJ, Pflegingab W (2016) Influence of laser pulse duration on the electrochemical performance of laser structured LiFePO4 composite electrodes. J Power Sources 304:24–32CrossRefGoogle Scholar
  27. 27.
    Qin GH, Ma QQ, Wang CY (2014) A porous C/LiFePO4/multiwalled carbon nanotubes cathode material for Lithium ion batteries. Electrochim Acta 115:407–415CrossRefGoogle Scholar
  28. 28.
    Cai G, Fung KY, Ng KM, Chu KL, Hui K, Xue L (2016) Critical assessment of particle quality of commercial LiFePO4 cathode material using coin cells-a causal table for lithium-ion battery performance. J Solid State Electrochem 20(2):379–387CrossRefGoogle Scholar
  29. 29.
    Ouvrard G, Zerrouki M, Soudan P, Lestriez B, Masquelier C, Morcrette M, Hamelet S, Belin S, Flank AM, Baudelet F (2013) Heterogeneous behaviour of the lithium battery composite electrode LiFePO4. J Power Sources 229:16–21CrossRefGoogle Scholar
  30. 30.
    Huang KP, Fey GTK, Lin YC, Wu PJ, Chang JK, Kao HM (2017) Magnetic impurity effects on self-discharge capacity, cycle performance, and rate capability of LiFePO4/C composites. J Solid State Electrochem 21(6):1767–1775CrossRefGoogle Scholar
  31. 31.
    Li J, Qu QT, Zhang LF, Zhang L, Zheng HH (2013) A monodispersed nano-hexahedral LiFePO4 with improved power capability by carbon-coatings. J Alloys Compd 579:377–383CrossRefGoogle Scholar
  32. 32.
    Qin X, Wang XH, Xiang HM, Xie J, Li JJ, Zhou YC (2010) Mechanism for hydrothermal synthesis of LiFePO4 platelets as cathode material for lithium-ion batteries. J Phys Chem C 114(39):16806–16812CrossRefGoogle Scholar
  33. 33.
    Swiderska-Mocek A, Lewandowski A (2017) Kinetics of Li-ion transfer reaction at LiMn2O4, LiCoO2, and LiFePO4 cathodes. J Solid State Electrochem 21(5):1365–1372CrossRefGoogle Scholar
  34. 34.
    Wang HQ, Lai FY, Li Y, Zhang XH, Huang YG, Hu SJ, Li QY (2015) Excellent stability of spinel LiMn2O4-based cathode materials for lithium-ion batteries. Electrochim Acta 177:290–297CrossRefGoogle Scholar
  35. 35.
    Xu Y, Zhao MS, Sun B (2016) Doping supervalent rare earth ion in LiFePO4/C through hydrothermal method. Solid State Ionics 291:14–19CrossRefGoogle Scholar
  36. 36.
    Tu XF, Zhou YK, Tian XH, Song YJ, Deng CJ, Zhu HX (2016) Monodisperse LiFePO4 microspheres embedded with well-dispersed nitrogen-doped carbon nanotubes as high-performance positive electrode material for lithium-ion batteries. Electrochim Acta 222:64–73CrossRefGoogle Scholar
  37. 37.
    Bazzi K, Nazri M, Naik VM, Garg VK, Oliveira AC, Vaishnava PP, Nazri GA, Naik R (2016) Enhancement of electrochemical behavior of nanostructured LiFePO4/carbon cathode material with excess Li. J Power Sources 306:17–23CrossRefGoogle Scholar
  38. 38.
    Li X, Shao Z, Liu K, Liu G, Xu B (2018) Synthesis and electrochemical characterizations of LiMn2O4 prepared by high temperature ball milling combustion method with citric acid as fuel. J Electroanal Chem 818:204–209CrossRefGoogle Scholar
  39. 39.
    Han B, Meng XD, Ma L, Nan JY (2016) Nitrogen-doped carbon decorated LiFePO4 composite synthesized via a microwave heating route using polydopamine as carbon-nitrogen precursor. Ceram Int 42(2):2789–2797CrossRefGoogle Scholar
  40. 40.
    Ting-Kuo Fey G, Lu TL, Wu FY, Li WH (2008) Carboxylic acid-assisted solid-state synthesis of LiFePO4/C composites and their electrochemical properties as cathode materials for lithium-ion batteries. J Solid State Electrochem 12(7-8):825–833CrossRefGoogle Scholar
  41. 41.
    Zhao CS, Wang LN, Chen JT, Gao M (2017) Environmentally benign and scalable synthesis of LiFePO4 nanoplates with high capacity and excellent rate cycling performance for lithium ion batteries. Electrochim Acta 255:266–273CrossRefGoogle Scholar
  42. 42.
    Tian Z, Zhou ZF, Liu SS, Ye F, Yao SJ (2015) Enhanced properties of olivine LiFePO4/graphene co-doped with Nb5+ and Ti4+ by a sol-gel method. Solid State Ionics 278:186–191CrossRefGoogle Scholar
  43. 43.
    Han CG, Zhu CY, Saito G, Akiyama T (2015) Glycine/sucrose-based solution combustion synthesis of high-purity LiMn2O4 with improved yield as cathode materials for lithium-ion batteries. Adv Powder Technol 26(2):665–671CrossRefGoogle Scholar
  44. 44.
    Johnson ID, Blagovidova E, Dingwall PA, Brett DJL, Shearing PR, Darr JA (2016) High power Nb-doped LiFePO4 Li-ion battery cathodes; pilot-scale synthesis and electrochemical properties. J Power Sources 326:476–481CrossRefGoogle Scholar
  45. 45.
    Zhang Q, Wang S, Zhou Z, Ma G, Jiang W, Guo X, Zhao S (2011) Structural and electrochemical properties of Nd-doped LiFePO4/C prepared without using inert gas. Solid State Ionics 191(1):40–44CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MetallurgyNortheastern UniversityShenyangPeople’s Republic of China

Personalised recommendations