Journal of Solid State Electrochemistry

, Volume 23, Issue 2, pp 635–644 | Cite as

Network-like holey NiCo2O4 nanosheet arrays on Ni foam synthesized by electrodeposition for high-performance supercapacitors

  • Weibo Wang
  • Zhenjiang LiEmail author
  • Alan Meng
  • Qingdang Li
Original Paper


To achieve high-performance supercapacitors, electrode materials with the accessible electrode area, electrons, and ions diffusion channels are strongly needed. Herein, the network-like holey NiCo2O4 nanosheet arrays grown on Ni foam have been synthesized by a facile and efficient electrodeposition followed by calcination as a binder-free electrode for supercapacitors. The nanosheets are interconnected and interlocked together to form a network-like structure with abundant open channels, and the arrays are about 2.3 μm in thickness. Interestingly, the holey nanosheets include numerous macropores (50–160 nm) and mesopores (3–10 nm), which contribute to the rapid electrolyte ions diffusion between the nanosheet layers and the increase of capacitances. The NiCo2O4 nanosheet arrays electrode displays a high capacitance of 2.23 F cm−2 (1012.5 F g−1) at a current density of 5 mA cm−2, good rate capability of 67.3% at a current density of 50 mA cm−2, and high-cycling stability. These results indicate that the network-like holey NiCo2O4 nanosheet arrays electrode has a significant potential application in supercapacitors.


Supercapacitors NiCo2O4 nanosheet arrays Electrodeposition Electrochemical performances 


Funding information

The work reported here was supported by the National Natural Science Foundation of China under Grant No. 51672144, 51572137, and 51502149; the Natural Science Foundation of Shandong Province under Grant No. ZR2016EMB25, ZR2017PEM006, and ZR201702210482; the Higher Educational Science and Technology Program of Shandong Province under Grant No. J16LA10, and J17KA014; the Application Foundation Research Program of Qingdao under Grant No. 15-9-1-28-jch; the Taishan Scholars Program of Shandong Province under No. ts201511034; and the Overseas Taishan Scholars Program. We would like to express our grateful thanks to them for their financial support.

Supplementary material

10008_2018_4149_MOESM1_ESM.doc (5 mb)
ESM 1 (DOC 5112 kb)


  1. 1.
    Lin JH, Jia HN, Liang HY, Chen SL, Cai YF, Qi JL, Qu CQ, Cao J, Fei WD, Feng JC (2018) Hierarchical CuCo2S4@NiMn-layered double hydroxide core-shell hybrid arrays as electrodes for supercapacitors. Chem Eng J 336:562–569CrossRefGoogle Scholar
  2. 2.
    Waghmode RB, Torane AP (2016) Hierarchical 3D NiCo2O4 nanoflowers as electrode materials for high performance supercapacitors. J Mater Sci Mater Electron 27(6):6133–6139CrossRefGoogle Scholar
  3. 3.
    Liu SD, Hui KS, Hui KN, Yun JM, Kim KH (2016) Vertically stacked bilayer CuCo2O4/MnCo2O4 heterostructures on functionalized graphite paper for high-performance electrochemical capacitors. J Mater Chem A 4(21):8061–8071CrossRefGoogle Scholar
  4. 4.
    An YF, Hu ZG, Guo BS, An N, Zhang YD, Li ZM, Yang YY, Wu HY (2016) Electrodeposition of honeycomb-shaped NiCo2O4 on carbon cloth as binder-free electrode for asymmetric electrochemical capacitor with high energy density. RSC Adv 6(44):37562–37573CrossRefGoogle Scholar
  5. 5.
    Xiong XH, Zhao B, Ding D, Chen DC, Yang CG, Lei Y, Liu ML (2016) One-step synthesis of architectural Ni3S2 nanosheet-on-nanorods array for use as high-performance electrodes for supercapacitors. NPG Asia Mater 8:301–307CrossRefGoogle Scholar
  6. 6.
    Chen H, Hsieh CK, Yang Y, Liu XY, Lin CH, Tsai CH, Tsai CH, Wen ZQ, Dong F, Zhang YX (2017) Hierarchical nickel cobaltate/manganese dioxide core-shell nanowire arrays on graphene-decorated nickel foam for high-performance supercapacitors. ChemElectroChem 4(9):2414–2422CrossRefGoogle Scholar
  7. 7.
    Wen P, Fan MJ, Yang DS, Wang Y, Cheng HL, Wang JQ (2016) An asymmetric supercapacitor with ultrahigh energy density based on nickle cobalt sulfide nanocluster anchoring multi-wall carbon nanotubes hybrid. J Power Sources 320:28–36CrossRefGoogle Scholar
  8. 8.
    Li ZC, Ji X, Han JM, Hua Y, Guo R (2016) NiCo2S4 nanoparticles anchored on reduced graphene oxide sheets: in-situ synthesis and enhanced capacitive performance. J Colloid Interface Sci 477:46–53CrossRefGoogle Scholar
  9. 9.
    Cai DP, Xiao SH, Wang DD, Liu B, Wang LL, Liu Y, Li H, Wang YR, Li QH, Wang TH (2014) Morphology controlled synthesis of NiCo2O4 nanosheet array nanostructures on nickel foam and their application for pseudocapacitors. Electrochim Acta 142:118–124CrossRefGoogle Scholar
  10. 10.
    Zhou XY, Chen GH, Tang JJ (2015) One-dimensional NiCo2O4 nanowire arrays grown on nickel foam for high-performance lithium-ion batteries. J Power Sources 299:97–103CrossRefGoogle Scholar
  11. 11.
    Yu M, Chen JP, Liu JH, Li SM, Ma YX, Zhang JD, An JW (2015) Mesoporous NiCo2O4 nanoneedles grown on 3D graphene-nickel foam for supercapacitor and methanol electro-oxidation. Electrochim Acta 151:99–108CrossRefGoogle Scholar
  12. 12.
    Zhang GQ, Lou XW (2013) Controlled growth of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers for high-performance supercapacitors. Sci Rep 3(1):1470CrossRefGoogle Scholar
  13. 13.
    Zheng QY, Zhang XY, Shen YM (2015) Construction of hierarchical porous NiCo2O4 films composed of nanowalls as cathode materials for high-performance supercapacitor. Mater Res Bull 64:401–404CrossRefGoogle Scholar
  14. 14.
    Zhang QB, Wang JX, Dong JC, Ding F, Li XH, Zhang B, Yang SH, Zhang KL (2015) Facile general strategy toward hierarchical mesoporous transition metal oxides arrays on three-dimensional macroporous foam with superior lithium storage properties. Nano Energy 13:77–91CrossRefGoogle Scholar
  15. 15.
    Li DL, Gong YN, Pan CX (2016) Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors. Sci Rep 6(1):29788CrossRefGoogle Scholar
  16. 16.
    Wang JX, Zhang YY, Ye JH, Wei HM, Hao JH, Mu JY, Zhao SQ, Hussain S (2016) Facile synthesis of three-dimensional NiCo2O4 with different morphology for supercapacitors. RSC Adv 6(74):70077–70084CrossRefGoogle Scholar
  17. 17.
    Singh AK, Debasish S, Keshab K, Kalyan M, Khan GG (2016) High-performance supercapacitor electrode based on cobalt oxide−manganese dioxide−nickel oxide ternary 1D hybrid nanotubes. ACS Appl Mater Interfaces 8(32):20786–20792CrossRefGoogle Scholar
  18. 18.
    Lv YM, Liu AF, Che HW, Mu JB, Guo ZC, Zhang XL, Bai YM, Zhang ZX, Wang GS, Pei ZZ (2018) Three-dimensional interconnected MnCo2O4 nanosheets@MnMoO4 nanosheets core-shell nanoarrays on Ni foam for high-performance supercapacitors. Chem Eng J 336:64–73CrossRefGoogle Scholar
  19. 19.
    Yang Y, Fei HL, Ruan GD, Xiang CS, Tour JM (2014) Efficient electrocatalytic oxygen evolution on amorphous nickel-cobalt binary oxide nanoporous layers. ACS Nano 8(9):9518–9523CrossRefGoogle Scholar
  20. 20.
    Isa NNC, Mohd Y, Zaki MHMZ, Mohamad SAS (2017) Characterization of copper coating electrodeposited on stainless steel substrate. Int J Electrochem Sci 12:6010–6021Google Scholar
  21. 21.
    Hu XJ, Bai DC, Wu YQ, Chen SB, Ma Y, Lu Y, Chao YZ, Bai YX (2017) A facile synthesis of reduced holey grapheme oxide for supercapacitors. Chem Commun 53(99):13225–13228CrossRefGoogle Scholar
  22. 22.
    Zhang GN, Ren LJ, Yan Z, Kang LQ, Lei ZB, Xu H, Shi F, Liu ZH (2017) Rational design and controllable preparation of holey MnO2 nanosheets. Chem Commun 53(20):2950–2953CrossRefGoogle Scholar
  23. 23.
    Liu B, Kong DZ, Huang ZX, Mo RW, Wang Y, Han ZJ, Cheng CW, Yang HY (2016) Three-dimensional hierarchical NiCo2O4 nanowire@Ni3S2 nanosheet core/shell arrays for flexible asymmetric supercapacitors. Nanoscale 8(20):10686–10694CrossRefGoogle Scholar
  24. 24.
    Wang Y, Cheng K, Cao D, Yang F, Yan P, Zhang W, Wang G (2015) Preparation of NiCo2O4 nanosheet arrays and its high catalytic performance for H2O2 electroreduction. Fuel Cells 15(2):298–305CrossRefGoogle Scholar
  25. 25.
    Zhang GQ, Lou XW (2013) General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv Mater 25(7):976–979CrossRefGoogle Scholar
  26. 26.
    Peng YY, Liu YM, Chang JK, Wu CH, Ger MD, Pu NW, Chang CL (2015) A facile approach to produce holey grapheme and its application in supercapacitors. Carbon 81:347–356CrossRefGoogle Scholar
  27. 27.
    Wang H, Guo JL, Qing C, Sun DM, Wang BX, Tang YW (2014) Novel topotactically transformed carbon–CoO–NiO–NiCo2O4 nanosheet hybrid hetero-structured arrays as ultrahigh performance supercapacitors. Chem Commun 50(63):8697–8700CrossRefGoogle Scholar
  28. 28.
    Chen DH, Peng LL, Yuan YF, Zhu Y, Fang ZW, Yan CS, Chen G, Reza SY, Lu J, Khalil Amine YGH (2017) Two-dimensional holey Co3O4 nanosheets for high-rate alkali-ion batteries: from rational synthesis to in situ probing. Nano Lett 17(6):3907–3913CrossRefGoogle Scholar
  29. 29.
    Cheng JB, Lu Y, Qiu KW, Yan HL, Xu JY, Han L, XLiu XM, Luo JS, Kim JK, Luo YS (2015) Hierarchical core/shell NiCo2O4@ NiCo2O4 nanocactus arrays with dual-functionalities for high performance supercapacitors and li-ion batteries. Sci Rep 5(1):12099CrossRefGoogle Scholar
  30. 30.
    Wang HL, Gao QM, Jiang L (2011) Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors. Small 7(17):2454–2459Google Scholar
  31. 31.
    Zhang YB, Wang B, Liu F, Cheng JP, Zhang XW, Zhang L (2016) Full synergistic contribution of electrodeposited three-dimensional NiCo2O4@MnO2 nanosheet networks electrode for asymmetric supercapacitors. Nano Energy 27:627–637CrossRefGoogle Scholar
  32. 32.
    Chen SM, Yang G, Jia Y, Zheng HJ (2017) Three-dimensional NiCo2O4@NiWO4 core–shell nanowire arrays for high performance supercapacitors. J Mater Chem A 5(3):1028–1034CrossRefGoogle Scholar
  33. 33.
    Ji CC, Liu FZ, Xu L, Yang SC (2017) Urchin-like NiCo2O4 hollow microspheres and FeSe2 micro-snowflakes for flexible solid-state asymmetric supercapacitors. J Mater Chem A 5(11):5568–5576CrossRefGoogle Scholar
  34. 34.
    Rong H, Chen T, Shi R, Zhang YY (2018) Hierarchical NiCo2O4@NiCo2S4 Nanocomposite on Ni foam as an electrode for hybrid Sspercapacitors. ACS Omega 3(5):5634–5642CrossRefGoogle Scholar
  35. 35.
    Yue SH, Tong H, Lu L, Tang WW, Bai WL, Jin FQ, Han QW, He JP, Liu J, Zhang XG (2017) Hierarchical NiCo2O4 nanosheets/nitrogen doped graphene/carbon nanotube film with ultrahigh capacitance and long cycle stability as a flexible binder-free electrode for supercapacitors. J Mater Chem A 5(2):689–698CrossRefGoogle Scholar
  36. 36.
    Chen R, Wang HY, Miao JW, Yang HB, Liu B (2015) A flexible high-performance oxygen evolution electrode with three-dimensional NiCo2O4 core-shell nanowires. Nano Energy 11:333–340CrossRefGoogle Scholar
  37. 37.
    Liu XY, Shi SJ, Xiong QQ, Li L, Zhang YJ, Tang H, Gu CD, Wang XL, Tu JP (2013) Hierarchical NiCo2O4@NiCo2O4 core/shell nanoflake arrays as high-performance supercapacitor materials. ACS Appl Mater Interfaces 5(17):8790–8795CrossRefGoogle Scholar
  38. 38.
    Ma HN, He J, Xiong DB, Wu JS, Li QQ, Dravid V, Zhao YF (2016) Nickel cobalt hydroxide @reduced graphene oxide hybrid nanolayers for high performance asymmetric supercapacitors with remarkable cycling stability. ACS Appl Mater Interfaces 8(3):1992–2000CrossRefGoogle Scholar
  39. 39.
    He XY, Li RM, Liu JY, Liu Q, Chen RR, Song DL, Wang J (2018) Hierarchical FeCo2O4@NiCo layered double hydroxide core/shell nanowires for high performance flexible all-solid-state asymmetric supercapacitors. Chem Eng J 334:1573–1583CrossRefGoogle Scholar
  40. 40.
    Zhao J, Li ZJ, Zhang M, Meng AL, Li QD (2016) Direct growth of ultrathin NiCo2O4/NiO nanosheets on SiC nanowires as a free-standing advanced electrode for high-performance asymmetric supercapacitors. ACS Sustain Chem Eng 4(7):3598–3608CrossRefGoogle Scholar
  41. 41.
    Huang YY, Shi TL, Jiang SL, Cheng SY, Tao XX, Zhong Y, Liao GL, Tang ZR (2016) Enhanced cycling stability of NiCo2S4@NiO core-shell nanowire arrays for all-solid-state asymmetric supercapacitors. Sci Rep 6:38621–38630CrossRefGoogle Scholar
  42. 42.
    Kim TH, Veerasubramani GK, Kim SJ (2017) Hierarchically porous flower-like nickel cobaltite nanosheets as a binder-less electrode for supercapacitor application with ultra-high capacitance. J Ind Eng Chem 3771:1–7CrossRefGoogle Scholar
  43. 43.
    Huang L, Chen DC, Ding Y, Feng S, Wang ZL, Liu ML (2013) Nickel−cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 13(7):3135–3139CrossRefGoogle Scholar
  44. 44.
    Li YH, Zhang YF, Li YJ, Wang ZY, Fu HY, Zhang XN, Chen YH, Zhang HZ, Li XD (2014) Unveiling the dynamic capacitive storage mechanism of Co3O4@NiCo2O4 hybrid nanoelectrodes for supercapacitor applications. Electrochim Acta 145:177–184CrossRefGoogle Scholar
  45. 45.
    Zhang Y, Zhang YH, Zhang DY, Sun L (2017) Urchin-like NiCo2O4 nanoneedles grown on mesocarbon microbeads with synergistic electrochemical properties as electrodes for symmetric supercapacitors. Dalton Trans 46(29):9457–9465CrossRefGoogle Scholar
  46. 46.
    Liu Y, Wang ZB, Zhong YJ, Tade M, Zhou W, Shao ZP (2017) Molecular design of mesoporous NiCo2O4 and NiCo2S4 with sub-micrometer-polyhedron architectures for efficient pseudocapacitive energy storage. Adv Funct Mater 27(28):1701229–1701239CrossRefGoogle Scholar
  47. 47.
    Wu X, Han ZC, Zheng X, Yao SY, Yang X, Zhai TY (2017) Core-shell structured Co3O4@NiCo2O4 electrodes grown on flexible carbon fibers with superior electrochemical properties. Nano Energy 31:410–417CrossRefGoogle Scholar
  48. 48.
    Fu WB, Wang YL, Han WH, Zhang ZM, Zha HM, Xie EQ (2016) Construction of hierarchical ZnCo2O4@NixCo2x(OH)6x core/shell nanowire arrays for high-performance supercapacitors. J Mater Chem A 4(1):173–182CrossRefGoogle Scholar
  49. 49.
    Sabari Arul N, Cavalcante LS, Han JI (2018) Facile synthesis of ZnS/MnS nanocomposites for supercapacitor applications. J Solid State Electrochem 22(1):303–313CrossRefGoogle Scholar
  50. 50.
    Lu Y, Yan HL, Zhang DY, Lin J, Xue YM, Li J, Luo YS, Tang CC (2014) Hybrid nanonet/nanoflake NiCo2O4 electrodes with an ultrahigh surface area for supercapacitors. J Solid State Electrochem 18(11):3143–3152CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Polymer Material Advanced Manufacturing Technology of Shandong Province, College of Electromechanical Engineering, College of Sino-German Science and TechnologyQingdao University of Science and TechnologyQingdaoPeople’s Republic of China
  2. 2.Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdaoChina

Personalised recommendations