Journal of Solid State Electrochemistry

, Volume 23, Issue 2, pp 441–453 | Cite as

Lithium intercalation and conduction in Fe-containing tantalum oxide films synthesized with an atmospheric pressure plasma jet

  • Yung-Sen LinEmail author
  • Bing-Shiun Shie
  • Yan-Hong Lai
  • Jui-Hung Chen
  • Zhi-Wei Gu
  • Hsiang Chen
  • Chia-Feng Lin
Original Paper


Lithium ionic intercalation and conduction performance of tantalum oxides films improved by adding with iron oxides using an atmospheric pressure plasma jet (APPJ) is investigated. Precursors [tantalum ethoxide, Ta(OC2H5)5]2] and ferrocene [Fe(C5H5)2] vapors are carried by argon gas, mixed by oxygen gas and injected into air plasma torch for rapid synthesis of organo-tantalum-iron oxides (TaFexOyCz) films onto the polished stainless steel substrate at a short exposed-duration of 35 s. The APPJ-synthesized TaFexOyCz films possess the prominent Li+ ionic intercalation performance for 200 cycles of reversible Li+ ionic intercalation and deintercalation in a 1 mol/L LiClO4-propylene carbonate electrolyte by switching measurements with a potential sweep from − 1.25 to 1.25 V at a scan rate of 40 mV/s. After 200 cycles of reversible Li+ ionic intercalation and deintercalation, the Li+ ions intercalated and deintercalated charges are respectively increased from 2.41 and 1.91mC/cm2 for TaOyCz film to 5.69 and 5.23 mC/cm2 for TaFexOyCz film. The Li+ ionic conduction performance of TaOyCz film is highly enhanced from 5.76 × 10−11 to 1070 × 10−11 S/cm for TaFexOyCz film, while proven by electrochemical impedance spectroscopy in the devices of polyethylene terephthalate (PET)/indium tin oxide (ITO)/NiOx/TaOyCz/NiOx/ITO and PET/ITO/NiOx/TaFexOyCz/NiOx/ITO.


Tantalum oxide Iron oxide Lithium ionic intercalation Lithium ionic conduction Atmospheric pressure plasma 



This study is supported by the Ministry of Science and Technology of the Republic of China (MOST105-2221-E-035-089and MOST106-2221-E-035-080-MY3).


  1. 1.
    Niwa T, Takai O (2010) Optical and electrochemical properties of all-solid-state transmittance-type electrochromic devices. Thin Solid Films 518(6):1722–1727CrossRefGoogle Scholar
  2. 2.
    Frenning G, Engelmark F, Niklasson GA, Strømme M (2001) Li conduction in sputtered amorphous Ta2 O5. J Electrochem Soc 148(5):A418–A421CrossRefGoogle Scholar
  3. 3.
    Corbella C, Vives M, Pinyol A, Porqueras I, Person C, Bertran E (2003) Influence of the porosity of RF sputtered Ta2O5 thin films on their optical properties for electrochromic applications. Solid State Ionics 165(1-4):15–22CrossRefGoogle Scholar
  4. 4.
    Reichman B, Bard AJ (1979) The Electrochromic Process at WO3 Electrodes Prepared by Vacuum Evaporation and Anodic Oxidation of W. J Electrochem Soc 126(4):583–591CrossRefGoogle Scholar
  5. 5.
    Randin JP (1978) Chemical and electrochemical stability of WO3electrochromic films in liquid electrolytes. J Electron Mater 7(1):47–63CrossRefGoogle Scholar
  6. 6.
    Granqvist CG (2002) Hanbook of Inorganic Electrochromic Materials. Netherlands, AmsterdamGoogle Scholar
  7. 7.
    da Costa NBD, Pazinato JCO, Sombrio G, Pereira MB, Boudinov H, Gündel A, Moreira EC, Garcia ITS (2015) Tungsten oxide thin films obtained by anodisation in low electrolyte concentration. Thin Solid Films 578:124–132CrossRefGoogle Scholar
  8. 8.
    Nagai J, McMeeking GD, Saitoh Y (1999) Durability of electrochromic glazing. Sol Energ Mater Sol Cells 56:309–319CrossRefGoogle Scholar
  9. 9.
    Seman MT, Robbins JJ, Leonhardt D, Agarwal S, Wolden CA (2008) Comparison of Electrolyte Performance for Ta2O5 Thin Films Produced by Pulsed and Continuous Wave PECVD. J Electrochem Soc 155(6):J168–J174CrossRefGoogle Scholar
  10. 10.
    Lin Y-S, Sung P-J, Hsieh M-H (2016) Effects of O2 gases addition on enhanced lithium ion intercalation and conduction of flexible-transparent-lithiated tantalum oxide thin films synthesized by an atmospheric pressure plasma jet. Surf Coat Technol 303(Part A):215–225CrossRefGoogle Scholar
  11. 11.
    Fu ZW, Qin QZ (2000) Lithiation and Electrochromic Characteristics of Composite Ta2 O 5 ‐ TiO2 Films Fabricated by Ultraviolet Reactive Laser Ablation. J Electrochem Soc 147:2371–3474CrossRefGoogle Scholar
  12. 12.
    NuLi YN, Fu ZW, Chu YQ, Qin QZ (2003) Electrochemical and electrochromic characteristics of Ta2O5–ZnO composite films. Solid State Ionics 160(1-2):197–207CrossRefGoogle Scholar
  13. 13.
    Schrebler RS, Altamirano H, Grez P, Herrera FV, Munoz EC, Ballesteros LA, Cordova RA, Gomez H, Dalchiele EA (2010) The influence of different electrodeposition E/t programs on the photoelectrochemical properties of α-Fe2O3 thin films. Thin Solid Films 518(23):6844–6852CrossRefGoogle Scholar
  14. 14.
    Shim S-H, Bengtson A, Morgan D, Sturhahn W, Cataiii K, Zhao J, Lerche M, Prakapenka V (2009) Electronic and magnetic structures of the postperovskite-type Fe2O3 and implications for planetary magnetic records and deep interiors. Proc Natl Acad Sci USA 106:5508–5512CrossRefGoogle Scholar
  15. 15.
    Cai D, Li D, Ding L-X, Wang S, Wang H (2016) Interconnected α-Fe2O3 nanosheet arrays as high-performance anode materials for lithium-ion batteries. Electrochim Acta 192:407–413CrossRefGoogle Scholar
  16. 16.
    Yun S, Lee Y-C, Park HS (2016) Phase-Controlled Iron Oxide Nanobox Deposited on Hierarchically Structured Graphene Networks for Lithium Ion Storage and Photocatalysis. Sci Rep 6(19959):1–6Google Scholar
  17. 17.
    Garcia-Lobato MA, Martinez AI, Zarate RA, Castro-Roman M (2010) New Insight into the Electrochromic Properties of Iron Oxides. Appl Phys Express 3(115801):1–3Google Scholar
  18. 18.
    Hao C, Shen Y, Wang Z, Wang X, Feng F, Ge C, Zhao Y, Wang K (2016) Preparation and Characterization of Fe2O3 Nanoparticles by Solid-Phase Method and Its Hydrogen Peroxide Sensing Properties. ACS Sust Chem Eng 4(3):1069–1077CrossRefGoogle Scholar
  19. 19.
    Mirzaei A, Janghorban K, Hashemi B, Bonyani M, Leonardi SG, Neri G (2016) Highly stable and selective ethanol sensor based on α-Fe2O3 nanoparticles prepared by pechini sol-gel method. Ceram Int 42:6136–6144CrossRefGoogle Scholar
  20. 20.
    Brandt A, Balducci A (2013) Ferrocene as precursor for carbon-coated α-Fe2O3 nano-particles for rechargeable lithium batteries. J Power Sources 230:44–49CrossRefGoogle Scholar
  21. 21.
    Phani AR, Santucci S (2001) Growth of single phase tetragonal structure iron tantalum oxide thin films grown by sol-gel spin coating technique. J Mater Sci Lett 20(10):969–971CrossRefGoogle Scholar
  22. 22.
    Lin Y-S, Wu S-S, Tsai T-H (2010) Electrochromic properties of novel atmospheric pressure plasma jet-synthesized-organotungsten oxide films for flexible electrochromic devices. Sol Energ Mater Sol Cells 94(12):2283–2291CrossRefGoogle Scholar
  23. 23.
    Dobal PS, Katiyar RS, Jiang Y, Guo R, Bhalla AS (2000) Raman scattering study of a phase transition in tantalum pentoxide. J Raman Spectrosc 31(12):1061–1065CrossRefGoogle Scholar
  24. 24.
    Kovacs K, Kamnev AA, Mink J, Nemeth C, Kuzmann E, Megyes T, Grosz T, Medzihradszky-Schweiger H, Vertes A (2006) Mössbauer, vibrational spectroscopic and solution X-ray diffraction studies of the structure of iron(III) complexes formed with indole-3-alkanoic acids in acidic aqueous solutions. Struct Chem 17(1):105–120CrossRefGoogle Scholar
  25. 25.
    Cabana J, Monconduit L, Larcher D, Palacin MR (2010) Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater 22(35):E170–E192CrossRefGoogle Scholar
  26. 26.
    Wu Y, Fang S, Jiang Y (1999) Effects of nitrogen on the carbon anode of a lithium secondary battery. Solid State Ionics 120(1-4):117–123CrossRefGoogle Scholar
  27. 27.
    Lin Y-S, Chuang P-Y, Shie P-S (2015) Lithium electrochromic performance of flexible Ni oxide films enhanced by Fe oxide addition with an atmospheric pressure plasma jet for flexible electrochromic application. J Solid State Electrochem 19(6):1671–1683CrossRefGoogle Scholar
  28. 28.
    Lin Y-S, Lu W-H, Tsai T-H, Hsieh M-H, Huang C-M, Chung T-W (2016) Enhanced electrochromic performance of flexible WFexOyCz films by O2 gas addition using low temperature plasma polymerization. Vacuum 128:56–65CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringFeng Chia UniversityTaichungTaiwan
  2. 2.Department of Applied Materials and Optoelectronic EngineeringNational Chi Nan UniversityPuliTaiwan
  3. 3.Department of Materials Science and EngineeringNational Chung Hsing UniversityTaichungTaiwan

Personalised recommendations