Journal of Solid State Electrochemistry

, Volume 23, Issue 2, pp 397–405 | Cite as

Impact of alginate and fluoroethylene carbonate on the electrochemical performance of SiO–SnCoC anode for lithium-ion batteries

  • Guillermina L. LuqueEmail author
  • Yan Li
  • Xiaoqiao Zeng
  • Xiangyi Luo
  • Ezequiel P. M. Leiva
  • Zonghai Chen
  • Khalil AmineEmail author
Original Paper


The electrochemical performance of SiO–SnCoC composite anode for high-energy lithium-ion batteries was evaluated with particular emphasis on the impact of Alginate as a polymeric binder, as well as fluoroethylene carbonate (FEC) as electrolyte additive. It was found that the presence of FEC and the use of alginate pH 3 as binder help to improve the electrochemical stability of the composite anode, showing the best electrochemical performance with a high specific capacity, great capacity retention, and excellent coulombic efficiency. Particularly, the high precision self-discharge current study revealed that the alginate binder slowed down the parasitic reactions between the lithiated anode and the non-aqueous electrolyte.


Alginate Fluoroethylene carbonate Lithium-ion batteries Anode Self-discharge Parasitic reaction 



Research was funded by the US Department of Energy (DOE), Vehicle Technologies Office. Support from David Howell and Tien Duong of the US DOE’s Office of Vehicle Technologies Program is gratefully acknowledged. Argonne National Laboratory is operated for the US Department of Energy by UChicago Argonne, LLC, under contract DE-AC02-06CH11357. Guillermina Luque thanks CONICET for the fellowship received and the valuable help of Dr. Emiliano Primo.


  1. 1.
    Miranda D, Costa CM, Lanceros-Mendez S (2015) Lithium ion rechargeable batteries: State of the art and future needs of microscopic theoretical models and simulations. J Electroanal Chem 739:97–110CrossRefGoogle Scholar
  2. 2.
    Nitta N, Wu F, Tae Lee J, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264CrossRefGoogle Scholar
  3. 3.
    Diouf B, Pode R (2015) Potential of lithium-ion batteries in renewable energy. Renew Energy 76:375–380CrossRefGoogle Scholar
  4. 4.
    Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4(8):2682–2699CrossRefGoogle Scholar
  5. 5.
    Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Proietti Zaccaria R, Capiglia C (2014) Review on recent progress of nanostructured anode materials for li-ion batteries. J Power Sources 257:421–443CrossRefGoogle Scholar
  6. 6.
    Liu B, Abouimrane A, Ren Y, Balasubramanian M, Wang D, Fang ZZ, Amine K (2012) New anode material based on SiO–SnxCoyCz for lithium batteries. Chem Mater 24(24):4653–4661CrossRefGoogle Scholar
  7. 7.
    Kaspar J, Terzioglu C, Ionescu E, Graczyk-Zajac M, Hapis S, Kleebe H-J, Riedel R (2014) Stable SiOC/Sn nanocomposite anodes for lithium-ion batteries with outstanding cycling stability. Adv Funct Mater 24(26):4097–4104CrossRefGoogle Scholar
  8. 8.
    Obrovac MN, Chevrier VL (2014) Alloy negative electrodes for li-ion batteries. Chem Rev 114(23):11444–11502CrossRefGoogle Scholar
  9. 9.
    Tian H, Xin F, Wang X, He W, Han W (2015) High capacity group-IV elements (Si, Ge, Sn) based anodes for lithium-ion batteries. J Mater 1:153–169Google Scholar
  10. 10.
    Liu B, Abouimrane A, Brown DE, Zhang X, Ren Y, Zak Fang Z, Amine K (2013) Mechanically alloyed composite anode materials based on SiO–SnxFeyCz for li-ion batteries. J Mater Chem A 1(13):4376–4382CrossRefGoogle Scholar
  11. 11.
    Bourderau S, Brousse T, Schleich DM (1999) Amorphous silicon as a possible anode material for li-ion batteries. J Power Sources 81:233–236CrossRefGoogle Scholar
  12. 12.
    Wang YD, Dahn J (2006) Phase changes in electrochemically lithiated silicon at elevated temperature. J Electrochem Soc 153(12):A2314–A2318CrossRefGoogle Scholar
  13. 13.
    Ding N, Xu J, Yao Y, Wegner G, Lieberwirth I, Chen C (2009) Improvement of cyclability of Si as anode for li-ion batteries. J Power Sources 192(2):644–651CrossRefGoogle Scholar
  14. 14.
    Bridel J-S, Azaıs T, Morcrette M, Tarascon J-M, Larcher D (2010) Key parameters governing the reversibility of Si/Carbon/CMC electrodes for li-ion batteries. Chem Mater 22(3):1229–1241CrossRefGoogle Scholar
  15. 15.
    Komaba S, Shimomura K, Yabuuchi N, Ozeki T, Yui H, Konno K (2011) Study on polymer binders for high-capacity siO negative electrode of li-ion batteries. J Phys Chem C 115(27):13487–13495Google Scholar
  16. 16.
    Magasinski A, Zdyrko B, Kovalenko I, Hertzberg B, Burtovyy R, Huebner CF, Fuller TF, Luzinov I, Yushin G (2010) Toward efficient binders for li-ion battery Si-based anodes: polyacrylic acid. Appl Mater Interfaces 2(11):3004–3010CrossRefGoogle Scholar
  17. 17.
    Liu J, Zhang Q, Wu Z-Y, Wu J-H, Li J-T, Huanga L, Sun S-G (2014) Nano-/microstructured Si/C composite with high tap density as an anode material for lithium-ion batteries. Chem Commun 50(48):6386–6389CrossRefGoogle Scholar
  18. 18.
    Zhang L, Chai L, Xue P, Hao W, Zheng H (2014) A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries. J Mater Chem A 2(44):19036–19045Google Scholar
  19. 19.
    Ling M, Xu Y, Zhao H, Gu X, Qiu J, Li S, Wu M, Song X, Yan C, Liu G, Zhang S (2015) Dual-functional gum arabic binder for silicon anodes in lithium ion batteries. Nano Energy 12:178–185CrossRefGoogle Scholar
  20. 20.
    Chai L, Qu Q, Zhang L, Shen M, Zhang L, Zheng H (2013) Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries. Electrochim Acta 105:378–383CrossRefGoogle Scholar
  21. 21.
    Yue L, Zhang L, Zhong H (2014) Carboxymethyl chitosan: a new water soluble binder for Si anode of Li-ion batteries. J Power Sources 247:327–331CrossRefGoogle Scholar
  22. 22.
    Ming J, Ming H, Kwak W-J, Shin C, Zheng J, Sun Y-K (2014) The binder effect on an oxide-based anode in lithium and sodium-ion battery applications: the fastest way to ultrahigh performance. Chem Commun 50(87):13307–13310Google Scholar
  23. 23.
    Mazouzi D, Karkar Z, Reale Hernandez C, Jimenez Manero P, Guyomard D, Roue L, Lestriez B (2015) Critical roles of binders and formulation at multiscales of silicon-based composite electrodes. J Power Sources 280:533–549CrossRefGoogle Scholar
  24. 24.
    Wu Q, Ha S, Prakash J, Dees DW, Lu W (2013) Investigation on high energy lithium-ion batteries with aqueous binders. Electrochim Acta 114:1–6CrossRefGoogle Scholar
  25. 25.
    Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G (2011) A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334(6052):75–79CrossRefGoogle Scholar
  26. 26.
    Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126CrossRefGoogle Scholar
  27. 27.
    Wang K, Xing L, Zhu Y, Zheng X, Cai D, Li W (2017) A comparative study of Si-containing electrolyte additives for lithium ion battery: Which one is better and why is it better. J Power Sources 342:677–684CrossRefGoogle Scholar
  28. 28.
    Zhang SS (2006) A review on electrolyte additives for lithium-ion batteries. J Power Sources 162(2):1379–1394CrossRefGoogle Scholar
  29. 29.
    Martinez de la Hoz JM, Soto FA, Balbuena PB (2015) Effect of the electrolyte composition on SEI reactions at Si anodes of Li-ion batteries. J Phys Chem C 119(13):7060–7068CrossRefGoogle Scholar
  30. 30.
    Zhao X, Zhuang Q-C, Xu S-D, Xu Y-X, Shi Y-L, Zhang X-X (2015) A new insight into the content effect of fluoroethylene carbonate as a film forming additive for lithium-ion batteries. Int J Electrochem Sci 10:2515–2534Google Scholar
  31. 31.
    Shkrob IA, Wishart JF, Abraham DP (2015) What makes fluoroethylene carbonate different?. J Phys Chem C 119(27):14954–−14964CrossRefGoogle Scholar
  32. 32.
    Schroder K, Alvarado J, Yersak TA, Li J, Dudney N, Webb LJ, Shirley Meng Y, Stevenson KJ (2015) The effect of fluoroethylene carbonate as an additive on the solid electrolyte interphase on silicon lithium-ion electrodes. Chem Mater 27(16):5531–5542CrossRefGoogle Scholar
  33. 33.
    Zeng X, Xu G-L, Li Y, Luo X, Maglia F, Bauer C, Lux SF, Paschos O, Kim S-J, Lamp P, Lu J, Amine K, Chen Z (2016) Kinetic study of parasitic reactions in lithium-ion batteries: a case study on LiNi0.6Mn0.2Co0.2O2. ACS Appl Mater Interfaces 8(5):3446–3451CrossRefGoogle Scholar
  34. 34.
    Mazouzi D, Lestriez B, Roué L, Guyomard D (2009) Silicon composite electrode with high capacity and long cycle life. Electrochem Solid-State Lett 12(11):A215–A218CrossRefGoogle Scholar
  35. 35.
    de Kerchove AJ, Elimelech M (2007) Formation of polysaccharide gel layers in the presence of Ca2+ and K+ ions: measurements and mechanisms. Biomacromology 8(1):113–121Google Scholar
  36. 36.
    Aoki S, Han Z-J, Yamagiwa K, Yabuuchi N, Murase M, Okamoto K, Kiyosu T, Satoh M, Komaba S (2015) Acrylic acid-based copolymers as functional binder for silicon/graphite composite electrode in lithium-ion batteries. J Electrochem Soc 162(12):A2245–A2249Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemical Sciences and Engineering DivisionArgonne National LaboratoryLemontUSA
  2. 2.INFIQC, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Teórica y Computacional, CONICETCórdobaArgentina

Personalised recommendations