Journal of Solid State Electrochemistry

, Volume 23, Issue 2, pp 485–495 | Cite as

The effect of platinum electrode surfaces on precise primary pH measurements

  • Diana JehnertEmail author
  • Barbara Werner
  • Nadine Schiering
  • Karin Hanheiser
  • Carla Vogt
  • Anja Dreyer
  • Petra Spitzer
  • Thorsten Dziomba
  • André Felgner
  • Daniel Hagedorn
Original Paper


For primary pH measurements, a platinum hydrogen electrode and a silver chloride electrode are immersed in the same solution in a cell without transference (Harned cell). The platinum electrode is covered with dispersed platinum (platinum black) to increase the surface area. To determine the influence of specific deposition conditions (current density, duration, and composition of the electrolyte) on the properties of platinum black, the surface area, and the electrode performance, platinized platinum electrodes were investigated systematically using scanning electron microscopy and optical microscopy. Confocal laser scanning microscopy was applied to obtain quantitative information about roughness parameters. After assessment of the surface structures, improved conditions for the fabrication of platinized platinum electrodes were derived. It was found that all investigated electrochemically coated platinum electrodes obtained comparable values of standard potential of Ag/AgCl-electrodes within the measurement uncertainty. The platinum layer obtained by sputtering was significantly less distinct and less homogenous than the layer of platinum obtained by electrochemical deposition. The examinatio of shiny (uncoated) platinum electrodes evidenced a significant difference between multiple-used and freshly prepared platinum electrodes. Thus, uncoated platinum electrodes are not suitable for the Harned cell measurement either. Thus, to obtain reliable and reproducible results in pH measurements using the primary method, an electrochemical coating of the platinum electrodes under defined conditions is required.


Primary pH measurement Harned cell Platinum hydrogen electrode Electrode surface Metrology 



We thank Mr. Steffen Weiß for conducting the actual magnetron sputter-coating.

Supplementary material

10008_2018_4144_MOESM1_ESM.doc (56 kb)
ESM 1 (DOC 55 kb)


  1. 1.
    Vonau W, Guth U (2006) J Solid State Electrochem 10(9):746–752CrossRefGoogle Scholar
  2. 2.
    Razmi H, Heidari H, Habibi E (2008) J Solid State Electrochem 12(12):1579–1587CrossRefGoogle Scholar
  3. 3.
    Kahlert H (2008) J Solid State Electrochem 12(10):1255–1266CrossRefGoogle Scholar
  4. 4.
    Alizadeh T, Jamshidi F (2015) J Solid State Electrochem 19(4):1053–1062CrossRefGoogle Scholar
  5. 5.
    Buck RP, Rondinini S, Convington AK, Baucke FGK, Brett CMA, Camoes MF, Milton MJT, Mussini T, Naumann R, Pratt KW, Spitzer P, Wilson GS (2002) Pure Appl Chem 74(11):2169–2200CrossRefGoogle Scholar
  6. 6.
    Spitzer P, Pratt KW (2011) J Solid State Electrochem 15(1):69–76CrossRefGoogle Scholar
  7. 7.
    Bakos I (2000) J Solid State Electrochem 4:80–86Google Scholar
  8. 8.
    Forker W (1989) Elektrochemische Kinetik. Akademie-Verlag, BerlinGoogle Scholar
  9. 9.
    Brdicka R (1972) Grundlagen der physikalischen Chemie. VEB Deutscher Verlag der Wissenschaften, BerlinGoogle Scholar
  10. 10.
    Kortüm G (1957) Lehrbuch der Elektrochemie. Verlag Chemie GmbH, Weinheim/BergstrGoogle Scholar
  11. 11.
    Greenwood NN, Earnshaw A (1990) Chemie der Elemente. VCH Verlagsgesellschaft mbH, WeinheimGoogle Scholar
  12. 12.
    Lehmann G (1948) Die Wasserstoffionen-Messung. Johann Ambrosius Barth Verlag, LeipzigGoogle Scholar
  13. 13.
    Hunt LB (1962) Platinum Metals Rev 6:150–152Google Scholar
  14. 14.
    Draves CZ, Herman VT (1925) J Am Chem Soc 47(5):1226–1230CrossRefGoogle Scholar
  15. 15.
    Lorch AE (1934) Ind Eng Chem 6:164–165Google Scholar
  16. 16.
    Schwabe K (1976) pH-Messtechnik. Verlag Theodor Steinkopff, DresdenGoogle Scholar
  17. 17.
    Bates RG, Acree SF (1943) J Res Natl Bur Stand 30(2):129–155CrossRefGoogle Scholar
  18. 18.
    Dickson AG (1987) J Chem Thermodynamics 19(9):993–1000CrossRefGoogle Scholar
  19. 19.
    Bernard C (1970) Electrochim Acta 15(2):271–282CrossRefGoogle Scholar
  20. 20.
    Klopsteg PE (1922) Ind Eng Chem 14(5):399–405CrossRefGoogle Scholar
  21. 21.
    Clarke WF (1916) Dissertation. Johns Hopkins University, BaltimoreGoogle Scholar
  22. 22.
    Mohn A (1906) Dissertation. Universität ZürichGoogle Scholar
  23. 23.
    Feltham AM, Spiro M (1971) Chem Rev 71(2):177–193CrossRefGoogle Scholar
  24. 24.
    Hammett LP (1922) Dissertation. Columbia University, New YorkGoogle Scholar
  25. 25.
    Bates RG (1973) Determination of pH. Theory and practice. Wiley, New YorkCrossRefGoogle Scholar
  26. 26.
    Galster H (1990) pH-Messung. Grundlagen, Methoden, Anwendungen, Geräte. VCH Verlagsgesellschaft mbH, WeinheimGoogle Scholar
  27. 27.
    Hamer WJ, Acree SF (1944) J Res Natl Bur Stand 33(2):87–103CrossRefGoogle Scholar
  28. 28.
    Hollemann AF, Wiberg E (1958) Lehrbuch der anorganischen Chemie, 23. Auflage, Walter de Gruyter & Co., BerlinGoogle Scholar
  29. 29.
    Löffler F (2000) Design and production of the electric conductivity cell. In: PTB Bericht PTB-ThEx-15, 146. PTB-Seminar, Braunschweig, p 49–63Google Scholar
  30. 30.
    International Recommendation No. 54 (1981) pH scale for aqueous solutions. Organisation Internationale de Metrologie Legale (OIML)Google Scholar
  31. 31.
    Spitzer P, Wunderli S, Maksymiuk K, Michalska A, Kisiel A, Galus Z, Tauber G (2013) Reference electrodes for aqueous solutions. In: Inzelt G, Lewenstam A, Scholz F (eds) Handbook of reference electrodes. Springer-Verlag, Berlin Heidelberg, p 77–143Google Scholar
  32. 32.
    Hills GJ, Ives DJG (1951) J Chem Soc 305-310Google Scholar
  33. 33.
    Wagner W, Pruss A (2002) Phys Chem Ref Data 31(2):387–535CrossRefGoogle Scholar
  34. 34.
    Gennero de Chialvo MR, Chialvo AC (2004) Phys Chem Chem Phys 6(15):4009–4017CrossRefGoogle Scholar
  35. 35.
    Marković NM, Lucas CA, Climent V, Stamenković V, Ross PN (2000) Surf Sci 465(1-2):103–114CrossRefGoogle Scholar
  36. 36.
    Binder H, Köhling A, Metzelthin K, Sandstede G, Schrecker ML (1968) Chemie-Ing Techn 40(12):586–591CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Diana Jehnert
    • 1
    Email author
  • Barbara Werner
    • 1
  • Nadine Schiering
    • 1
  • Karin Hanheiser
    • 1
  • Carla Vogt
    • 2
  • Anja Dreyer
    • 2
  • Petra Spitzer
    • 3
  • Thorsten Dziomba
    • 3
  • André Felgner
    • 3
  • Daniel Hagedorn
    • 3
  1. 1.ZMK & ANALYTIK GmbHBitterfeld-WolfenGermany
  2. 2.Institut für Anorganische Chemie, AK AnalytikLeibniz Universität HannoverHannoverGermany
  3. 3.Physikalisch-Technische Bundesanstalt (PTB)BraunschweigGermany

Personalised recommendations