Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 2, pp 361–365 | Cite as

Facile synthesis of MXene/MnO2 composite with high specific capacitance

  • Qingtao WangEmail author
  • Zhonghao Zhang
  • Zhao Zhang
  • Xiaozhong Zhou
  • Guofu Ma
Original Paper
  • 185 Downloads

Abstract

Ti3C2Tx is one of the typical MXene materials, where Tx stands for various surface terminations (OH, O, and/or F groups). In this paper, the delaminated Ti3C2Tx, referred to as d-Ti3C2Tx, and MnO2 composites were prepared by a simple synthesis method. The substrate of the composite is the conductive d-Ti3C2Tx sheet. The MnO2 was grown on the surface of d-Ti3C2Tx and it can increase the specific capacitance of the composite. At the same time, the d-Ti3C2Tx substrate can provide a carrier for the growth and uniform dispersion of MnO2. Therefore, the d-Ti3C2Tx/MnO2 composite has high specific capacitance and good cycle stability. At a current density of 1 A g−1, the d-Ti3C2Tx/MnO2 composite has a specific capacitance of 242 F g−1, which is three times than that of Ti3C2Tx. The electrode capacitance retention rate can still reach 97% after 5000 cycles of galvanostatic charge and discharge.

Keywords

MXene Ti3C2Tx MnO2 Capacitance performance Supercapacitors 

Notes

Funding information

The research was financially supported by the Programmed for Changing Scholars and Innovative Research Team in University (IRT_15R56), the National Natural Science Foundation of China (Grant Nos. 51462032 and 21664012), the Innovation Team Basic Scientific Research Project of Gansu Province (1606RJIA324), Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, and Key Laboratory of Polymer Materials of Gansu Province.

Supplementary material

10008_2018_4143_MOESM1_ESM.docx (275 kb)
ESM 1 (DOCX 275 kb)

References

  1. 1.
    Guan C, Liu J, Wang Y, Mao L, Fan Z, Shen Z, Zhang H, Wang J (2015) Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability. ACS Nano 9(5):5198–5207CrossRefGoogle Scholar
  2. 2.
    Meng Y, Wang K, Zhang Y, Wei Z (2013) Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors. Adv Mater 25(48):6985–6990CrossRefGoogle Scholar
  3. 3.
    Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23(37):4248–4253CrossRefGoogle Scholar
  4. 4.
    Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum MW (2012) Two-dimensional transition metal carbides. ACS Nano 6(2):1322–1331CrossRefGoogle Scholar
  5. 5.
    Lukatskaya MR, Mashtalir O, Ren CE, Dall'agnese Y, Rozier P, Taberna PL, Naguib M, Simon P, Barsoum MW, Gogotsi Y (2013) Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153):1502–1505CrossRefGoogle Scholar
  6. 6.
    Hu M, Li Z, Hu T, Zhu S, Zhang C, Wang X (2016) High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation. ACS Nano 10(12):11344–11350CrossRefGoogle Scholar
  7. 7.
    Hope MA, Forse AC, Griffith KJ, Lukatskaya MR, Ghidiu M, Gogotsi Y, Grey CP (2016) NMR reveals the surface functionalisation of Ti3C2 MXene. Phys Chem Chem Phys 18(7):5099–5102CrossRefGoogle Scholar
  8. 8.
    Mashtalir O, Lukatskaya MR, Zhao MQ, Barsoum MW, Gogotsi Y (2015) Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Adv Mater 27(23):3501–3506CrossRefGoogle Scholar
  9. 9.
    Liang X, Garsuch A, Nazar LF (2015) Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew Chem Int Ed 54(13):3907–3911CrossRefGoogle Scholar
  10. 10.
    Er D, Li J, Naguib M, Gogotsi Y, Shenoy VB (2014) Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl Mater Interfaces 6(14):11173–11179CrossRefGoogle Scholar
  11. 11.
    Lukatskaya MR, Bak S-M, Yu X, Yang X-Q, Barsoum MW, Gogotsi Y (2015) Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv Energy Mater 5(15):1500589CrossRefGoogle Scholar
  12. 12.
    Dall’Agnese Y, Rozier P, Taberna P-L, Gogotsi Y, Simon P (2016) Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes. J Power Sources 306:510–515CrossRefGoogle Scholar
  13. 13.
    Lin Z, Sun D, Huang Q, Yang J, Barsoum MW, Yan X (2015) Carbon nanofiber bridged two-dimensional titanium carbide as a superior anode for lithium-ion batteries. J Mater Chem A 3(27):14096–14100CrossRefGoogle Scholar
  14. 14.
    Zhu J, Tang Y, Yang C, Wang F, Cao M (2016) Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance. J Electrochem Soc 163(5):A785–A791CrossRefGoogle Scholar
  15. 15.
    Boota M, Anasori B, Voigt C, Zhao MQ, Barsoum MW, Gogotsi Y (2016) Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv Mater 28(7):1517–1522CrossRefGoogle Scholar
  16. 16.
    Hillary B, Sudarsanam P, Amin MH, Bhargava SK (2017) Nanoscale cobalt-manganese oxide catalyst supported on shape-controlled cerium oxide: effect of nanointerface configuration on structural, redox, and catalytic properties. Langmuir 33(8):1743–1750CrossRefGoogle Scholar
  17. 17.
    Hristovski KD, Markovski J (2017) Engineering metal (hydr) oxide sorbents for removal of arsenate and similar weak-acid oxyanion contaminants: a critical review with emphasis on factors governing sorption processes. Sci Total Environ 598:258–271CrossRefGoogle Scholar
  18. 18.
    Sk MM, Yue CY, Ghosh K, Jena RK (2016) Review on advances in porous nanostructured nickel oxides and their composite electrodes for high-performance supercapacitors. J Power Sources 308:121–140CrossRefGoogle Scholar
  19. 19.
    Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40(3):1697–1721CrossRefGoogle Scholar
  20. 20.
    Yun YS, Kim JM, Park HH, Lee J, Huh YS, Jin H-J (2013) Free-standing heterogeneous hybrid papers based on mesoporous γ-MnO2 particles and carbon nanotubes for lithium-ion battery anodes. J Power Sources 244:747–751CrossRefGoogle Scholar
  21. 21.
    Zhao MQ, Ren CE, Ling Z, Lukatskaya MR, Zhang C, Van Aken KL, Barsoum MW, Gogotsi Y (2015) Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv Mater 27(2):339–345CrossRefGoogle Scholar
  22. 22.
    Chen Y, Zhang Y, Geng D, Li R, Hong H, Chen J, Sun X (2011) One-pot synthesis of MnO2/graphene/carbon nanotube hybrid by chemical method. Carbon 49(13):4434–4442CrossRefGoogle Scholar
  23. 23.
    Li L, Hu ZA, An N, Yang YY, Li ZM, Wu HY (2014) Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability. J Phys Chem C 118(40):22865–22872CrossRefGoogle Scholar
  24. 24.
    Peng H, Ma G, Mu J, Sun K, Lei Z (2014) Low-cost and high energy density asymmetric supercapacitors based on polyaniline nanotubes and MoO3 nanobelts. J Mater Chem A 2(27):10384–10388CrossRefGoogle Scholar
  25. 25.
    Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2. Adv Mater 23(37):4248–4253CrossRefGoogle Scholar
  26. 26.
    Jiang L, Sheng L, Long C, Fan Z (2015) Densely packed graphene nanomesh-carbon nanotube hybrid film for ultra-high volumetric performance supercapacitors. Nano Energy 11:471–480CrossRefGoogle Scholar
  27. 27.
    Lin Z, Barbara D, Taberna P-L, Van Aken KL, Anasori B, Gogotsi Y, Simon P (2016) Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte. J Power Sources 326:575–579CrossRefGoogle Scholar
  28. 28.
    Tang Y, Zhu J, Yang C, Wang F (2016) Enhanced supercapacitive performance of manganese oxides doped two-dimensional titanium carbide nanocomposite in alkaline electrolyte. J Alloys Compd 685:194–201CrossRefGoogle Scholar
  29. 29.
    Zhao C, Wang Q, Zhang H, Passerini S, Qian X (2016) Two-dimensional titanium carbide/RGO composite for high-performance supercapacitors. ACS Appl Mater Interfaces 8(24):15661–15667CrossRefGoogle Scholar
  30. 30.
    Rakhi RB, Ahmed B, Hedhili MN, Anjum DH, Alshareef HN (2015) Effect of Postetch annealing gas composition on the structural and electrochemical properties of Ti2CTxMXene electrodes for supercapacitor applications. Chem Mater 27(15):5314–5323CrossRefGoogle Scholar
  31. 31.
    Rakhi RB, Ahmed B, Anjum D, Alshareef HN (2016) Direct chemical synthesis of MnO2 nanowhiskers on transition-metal carbide surfaces for supercapacitor applications. ACS Appl Mater Interfaces 8(29):18806–18814CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal UniversityLanzhouChina

Personalised recommendations