Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 2, pp 351–360 | Cite as

Application of TiO2-nanotubes/PbO2 as an anode for the electrochemical elimination of Acid Red 1 dye

  • José Eudes L. Santos
  • Dayanne Chianca de Moura
  • Djalma Ribeiro da Silva
  • Marco Panizza
  • Carlos A. Martínez-HuitleEmail author
Original Paper
  • 51 Downloads

Abstract

In this study, galvanostatic electrolysis, through the use of the platinum supported on Ti (Ti/Pt) and Ti/TiO2-nanotubes/PbO2 anodes, was conducted in an electrochemical cell with 0.2 L of solution containing 100 mg dm−3 of the textile dye Acid Red 1 (AR1) using Na2SO4 as supporting electrolyte, applying 7.5 and 60 mA cm−2. From the voltammetric curves, it was possible to understand that Ti/TiO2-nanotubes/PbO2 electrode has high oxygen evolution overpotential than Ti/Pt anode. A direct electron transfer reaction is attained between the dye molecules and Ti/Pt surface, at lower currents. Conversely, the AR1 oxidation involves water decomposition intermediates, mainly ·OH radicals at Ti/TiO2-nanotubes/PbO2 anode. The electrolytic process was monitored by the UV–visible spectrometry and the chemical oxygen demand (COD). Results clearly show that Ti/TiO2-nanotubes/PbO2 anode performs better than Ti/TiO2 in removing ARI due to the electrosynthesis of strong oxidants on its surface (·OH and persulfates), achieving a higher oxidation rate, higher current efficiency, and less energy consumption than Ti/Pt electrode.

Keywords

Titanium oxide nanotubes PbO2 Anodic oxidation Dye Water treatment, strong oxidants 

Notes

Funding information

The authors thank the financial support provided by National Council for Scientific and Technological Development (CNPq - 446846/2014-7 and CNPq- 401519/2014-7, Brazil) and they also thank Industrie De Nora S.p.A. (Milan, Italy) for providing the Ti/Pt electrode.

Supplementary material

10008_2018_4134_MOESM1_ESM.doc (46 kb)
ESM 1 (DOC 45 kb)

References

  1. 1.
    Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109(12):6541–6569.  https://doi.org/10.1021/cr9001319 CrossRefGoogle Scholar
  2. 2.
    Martínez-Huitle CA, Rodrigo MA, Sirés I, Scialdone O (2015) Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem Rev 115(24):13362–13407.  https://doi.org/10.1021/acs.chemrev.5b00361 CrossRefGoogle Scholar
  3. 3.
    Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109(12):6570–6631.  https://doi.org/10.1021/cr900136g CrossRefGoogle Scholar
  4. 4.
    Martínez-Huitle CA, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 35(12):1324–1340.  https://doi.org/10.1039/B517632H CrossRefGoogle Scholar
  5. 5.
    Dai Q, Xia Y, Jiang L, Li W, Wang J, Chen J (2012) Enhanced degradation of aspirin by electrochemical oxidation with modified PbO2 electrode and hydrogen peroxide. Int J Electrochem Sci 7:12895–12906Google Scholar
  6. 6.
    Contreras N, Vidal J, Berríos C, Villegas L, Salazar R (2015) Degradation of antihypertensive hydrochlorothiazide in water from pharmaceutical formulations by electro-oxidation using a BDD anode. Int J Electrochem Sci 10(11):9269–9285Google Scholar
  7. 7.
    Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M (2014) Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res 21(14):8336–8367.  https://doi.org/10.1007/s11356-014-2783-1 CrossRefGoogle Scholar
  8. 8.
    Brillas E, Martínez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl Catal B Environ 166–167:603–643.  https://doi.org/10.1016/j.apcatb.2014.11.016 CrossRefGoogle Scholar
  9. 9.
    Marselli B, Garcia-Gomez J, Michaud PA, Rodrigo MA, Comninellis C (2003) Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J Electrochem Soc 150(3):D79–D83CrossRefGoogle Scholar
  10. 10.
    Barreto JPdP, Araújo KCdF, de Araújo DM, Martínez-Huitle CA (2015) Effect of sp3/sp2 ratio on boron doped diamond films for producing persulfate. ECS Electrochem Lett 4(12):E9–E11Google Scholar
  11. 11.
    Martínez-Huitle CA, Brillas E (2008) Electrochemical alternatives for drinking water disinfection. Angew Chem Int Ed 47(11):1998–2005.  https://doi.org/10.1002/anie.200703621 CrossRefGoogle Scholar
  12. 12.
    Martínez-Huitle CA, dos Santos EV, de Araújo DM, Panizza M (2012) Applicability of diamond electrode/anode to the electrochemical treatment of a real textile effluent. J Electroanal Chem 674:103–107.  https://doi.org/10.1016/j.jelechem.2012.02.005 CrossRefGoogle Scholar
  13. 13.
    Panizza M, Oturan MA (2011) Degradation of Alizarin Red by electro-Fenton process using a graphite-felt cathode. Electrochim Acta 56(20):7084–7087.  https://doi.org/10.1016/j.electacta.2011.05.105 CrossRefGoogle Scholar
  14. 14.
    Garcia-Segura S, Dosta S, Guilemany JM, Brillas E (2013) Solar photoelectrocatalytic degradation of acid orange 7 azo dye using a highly stable TiO2 photoanode synthesized by atmospheric plasma spray. Appl Catal B Environ 132–133:142–150.  https://doi.org/10.1016/j.apcatb.2012.11.037 CrossRefGoogle Scholar
  15. 15.
    Aquino JM, Pereira GF, Rocha-Filho RC, Bocchi N, Biaggio SR (2011) Electrochemical degradation of a real textile effluent using boron-doped diamond or β-PbO2 as anode. J Hazard Mater 192(3):1275–1282.  https://doi.org/10.1016/j.jhazmat.2011.06.039 CrossRefGoogle Scholar
  16. 16.
    de Moura DC, de Araújo CKC, Zanta CLPS, Salazar R, Martínez-Huitle CA (2014) Active chlorine species electrogenerated on Ti/Ru0.3Ti0.7O2 surface: electrochemical behavior, concentration determination and their application. J Electroanal Chem 731:145–152.  https://doi.org/10.1016/j.jelechem.2014.08.008 CrossRefGoogle Scholar
  17. 17.
    Palma-Goyes RE, Vazquez-Arenas J, Torres-Palma RA, Ostos C, Ferraro F, González I (2015) The abatement of indigo carmine using active chlorine electrogenerated on ternary Sb2O5-doped Ti/RuO2-ZrO2 anodes in a filter-press FM01-LC reactor. Electrochim Acta 174:735–744.  https://doi.org/10.1016/j.electacta.2015.06.037 CrossRefGoogle Scholar
  18. 18.
    Carlesi Jara C, Salazar-Banda GR, Arratia RS, Campino JS, Aguilera MI (2011) Improving the stability of Sb doped Sn oxides electrode thermally synthesized by using an acid ionic liquid as solvent. Chem Eng J 171(3):1253–1262.  https://doi.org/10.1016/j.cej.2011.05.039 CrossRefGoogle Scholar
  19. 19.
    Yu H, Li Y, Zhao M, Dong H, Yu H, Zhan S, Zhang L (2015) Energy-saving removal of methyl orange in high salinity wastewater by electrochemical oxidation via a novel Ti/SnO2-Sb anode—Air diffusion cathode system. Catal Today 258:156–161.  https://doi.org/10.1016/j.cattod.2015.04.030 CrossRefGoogle Scholar
  20. 20.
    An H, Cui H, Zhang W, Zhai J, Qian Y, Xie X, Li Q (2012) Fabrication and electrochemical treatment application of a microstructured TiO2-NTs/Sb–SnO2/PbO2 anode in the degradation of C.I. Reactive Blue 194 (RB 194). Chem Eng J 209:86–93.  https://doi.org/10.1016/j.cej.2012.07.089 CrossRefGoogle Scholar
  21. 21.
    Zeng X, Zhang M, Wang X, Chen X, Su X, Tang W (2012) Effects of Sn content on Ti/RuO2–SnO2–TiO2 anodes used in the generation of electrolyzed oxidizing water. J Electroanal Chem 677–680:133–138.  https://doi.org/10.1016/j.jelechem.2012.05.008 CrossRefGoogle Scholar
  22. 22.
    Li H, Chen Y, Zhang Y, Han W, Sun X, Li J, Wang L (2013) Preparation of Ti/PbO2–Sn anodes for electrochemical degradation of phenol. J Electroanal Chem 689:193–200.  https://doi.org/10.1016/j.jelechem.2012.11.035 CrossRefGoogle Scholar
  23. 23.
    Duan Y, Wen Q, Chen Y, Duan T, Zhou Y (2014) Preparation and characterization of TiN-doped Ti/SnO2-Sb electrode by dip coating for orange II decolorization. Appl Surf Sci 320:746–755.  https://doi.org/10.1016/j.apsusc.2014.09.182 CrossRefGoogle Scholar
  24. 24.
    Martínez-Huitle CA, Panizza M (2010) Application of PbO2 anodes for electrochemical wastewater treatment. In: Singh VG (ed) Advances in chemistry research: applied electrochemistry. Nova Science Publishers, New YorkGoogle Scholar
  25. 25.
    Li X, Pletcher D, Walsh FC (2011) Electrodeposited lead dioxide coatings. Chem Soc Rev 40(7):3879–3894.  https://doi.org/10.1039/C0CS00213E CrossRefGoogle Scholar
  26. 26.
    Cerro-Lopez M, Meas-Vong Y, Méndez-Rojas MA, Martínez-Huitle CA, Quiroz MA (2014) Formation and growth of PbO2 inside TiO2 nanotubes for environmental applications. Appl Catal B Environ 144:174–181.  https://doi.org/10.1016/j.apcatb.2013.07.018 CrossRefGoogle Scholar
  27. 27.
    Moura DCd, Quiroz MA, Silva DRd, Salazar R, Martínez-Huitle CA (2016) Electrochemical degradation of acid blue 113 dye using TiO2-nanotubes decorated with PbO2 as anode. Environ Nanotechnol Monit Manage 5:13–20.  https://doi.org/10.1016/j.enmm.2015.11.001 CrossRefGoogle Scholar
  28. 28.
    Song S, Fan J, He Z, Zhan L, Liu Z, Chen J, Xu X (2010) Electrochemical degradation of azo dye C.I. Reactive Red 195 by anodic oxidation on Ti/SnO2–Sb/PbO2 electrodes. Electrochim Acta 55(11):3606–3613.  https://doi.org/10.1016/j.electacta.2010.01.101 CrossRefGoogle Scholar
  29. 29.
    He Z, Huang C, Wang Q, Jiang Z, Chen J, Song S (2011) Preparation of a praseodymium modified Ti/SnO2-Sb/PbO2 electrode and its application in the anodic degradation of the azo dye acid black 194. Int J Electrochem Sci 6(9):4341–4354Google Scholar
  30. 30.
    Liang C, Huang CF, Mohanty N, Kurakalva RM (2008) A rapid spectrophotometric determination of persulfate anion in ISCO. Chemosphere 73(9):1540–1543.  https://doi.org/10.1016/j.chemosphere.2008.08.043 CrossRefGoogle Scholar
  31. 31.
    Santos JEL, Antonio Quiroz M, Cerro-Lopez M, de Moura DC, Martínez-Huitle CA (2018) Evidence for the electrochemical production of persulfate at TiO2 nanotubes decorated with PbO2. New J Chem 42(7):5523–5531.  https://doi.org/10.1039/C7NJ02604H CrossRefGoogle Scholar
  32. 32.
    Panizza M, Cerisola G (2007) Electrocatalytic materials for the electrochemical oxidation of synthetic dyes. Appl Catal B Environ 75(1):95–101.  https://doi.org/10.1016/j.apcatb.2007.04.001 CrossRefGoogle Scholar
  33. 33.
    Labiadh L, Barbucci A, Cerisola G, Gadri A, Ammar S, Panizza M (2015) Role of anode material on the electrochemical oxidation of methyl orange. J Solid State Electrochem 19(10):3177–3183.  https://doi.org/10.1007/s10008-015-2928-2 CrossRefGoogle Scholar
  34. 34.
    Salazar R, Ureta-Zañartu MS, González-Vargas C, Brito CdN, Martinez-Huitle CA (2018) Electrochemical degradation of industrial textile dye disperse yellow 3: role of electrocatalytic material and experimental conditions on the catalytic production of oxidants and oxidation pathway. Chemosphere 198:21–29.  https://doi.org/10.1016/j.chemosphere.2017.12.092 CrossRefGoogle Scholar
  35. 35.
    Martínez-Huitle CA, Panizza M (2018) Electrochemical oxidation of organic pollutants for wastewater treatment. Curr Opin Electrochem.  https://doi.org/10.1016/j.coelec.2018.07.010
  36. 36.
    Luo H, Li C, Sun X, Chen S, Ding B, Yang L (2017) Ultraviolet assists persulfate mediated anodic oxidation of organic pollutant. J Electroanal Chem 799:393–398.  https://doi.org/10.1016/j.jelechem.2017.06.037 CrossRefGoogle Scholar
  37. 37.
    Pletcher D, Walsh FC (1990) Industrial electrochemistry. Chapmann and Hall, LondonGoogle Scholar
  38. 38.
    Neta P, Madhavan V, Zemel H, Fessenden RW (1977) Rate constants and mechanism of reaction of sulfate radical anion with aromatic compounds. J Am Chem Soc 99(1):163–164.  https://doi.org/10.1021/ja00443a030 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of ChemistryFederal University of Rio Grande do NorteNatalBrazil
  2. 2.Department of Civil, Chemical and Environmental EngineeringUniversity of GenoaGenoaItaly

Personalised recommendations