Journal of Solid State Electrochemistry

, Volume 23, Issue 1, pp 259–268 | Cite as

Improved electrochemical properties of LiNi0.8Co0.15Mn0.05O2 prepared using Mn3O4-coated Ni0.842Co0.158(OH)2

  • Yuhuan Zhou
  • Hang Dong
  • Guobiao LiuEmail author
  • Shaomin Li
  • Heng Liu
  • Jun Mei
  • Yanhua Cui
  • Hao LiuEmail author
Original Paper


Ni-rich cathode materials with core-shell structure are promising candidate materials for lithium-ion batteries, since they have excellent electrochemical properties. In this article, LiNi0.8Co0.15Mn0.05O2 was synthesized using Mn3O4-coated Ni0.842Co0.158(OH)2 as the precursor. SEM and EPMA results indicated that LiNi0.8Co0.15Mn0.05O2 possessed a perfect core-shell structure. The perfect core-shell structure originates from that Ni0.842Co0.158(OH)2 is uniformly coated by flocculent Mn3O4 particles. Galvanostatic charge/discharge measurements showed that the reversible capacities of the as-prepared LiNi0.8Co0.15Mn0.05O2 are 199, 178, and 143 mAh/g at 0.1, 1.0, and 5.0 °C, respectively. Meanwhile, compared to LiNi0.8Co0.15Mn0.05O2 prepared using Mn(OH)2-coated Ni0.842Co0.158(OH)2 as the precursor, the as-prepared material demonstrated a highly enhanced capacity retention of 96% after 200 cycles and 77.5% after 750 cycles, as well as enhanced start temperature of thermal runaway.


Lithium batteries Ni-rich cathode material Core-shell Homogenous coating Mn3O4 

Supplementary material

10008_2018_4130_MOESM1_ESM.docx (5.9 mb)
ESM 1 (DOCX 6004 kb)


  1. 1.
    Broussely M, Archdale G (2004) Li-ion batteries and portable power source prospects for the next 5–10 years. J Power Sources 136(2):386–394CrossRefGoogle Scholar
  2. 2.
    Liu W, Oh P, Liu X, Lee MJ, Cho W, Chae S, Kim Y, Cho J (2015) Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew Chem 54(15):4440–4457CrossRefGoogle Scholar
  3. 3.
    Myung S-T, Maglia F, Park K-J, Yoon CS, Lamp P, Kim S-J, Sun Y-K (2016) Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett 2:196–223CrossRefGoogle Scholar
  4. 4.
    Manthiram A, Knight JC, Myung S-T, Oh S-M, Sun Y-K (2016) Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv Energy Mater 6(1):1501010CrossRefGoogle Scholar
  5. 5.
    Schipper F, Erickson EM, Erk C, Shin J-Y, Chesneau FF, Aurbach D (2016) Review—recent advances and remaining challenges for lithium ion battery cathodes. J Electrochem Soc 164:A6220–A6228CrossRefGoogle Scholar
  6. 6.
    Li Y, Mei J, Guo X, Zhong B, Liu H, Liu G, Dou S (2016) Hollow Li1.2Mn0.54Ni0.13Co0.13O2 micro-spheres synthesized by a co-precipitation method as a high-performance cathode material for li-ion batteries. RSC Adv 6(74):70091–70098CrossRefGoogle Scholar
  7. 7.
    Wang Z, Liu H, Wu J, Lau W-M, Mei J, Liu H, Liu G (2016) Hierarchical LiNi0.8Co0.15Al0.05O2 plates with exposed {010} active planes as a high performance cathode material for li-ion batteries. RSC Adv 6(38):32365–32369CrossRefGoogle Scholar
  8. 8.
    Ding Y, Mu D, Wu B, Wang R, Zhao Z, Wu F (2017) Recent progresses on nickel-rich layered oxide positive electrode materials used in lithium-ion batteries for electric vehicles. Appl Energy 195:586–599CrossRefGoogle Scholar
  9. 9.
    Manthiram A, Song B, Li W (2017) A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy Storage Mater 6:125–139CrossRefGoogle Scholar
  10. 10.
    Zhou Y, Wang Y, Li S, Mei J, Liu H, Liu H, Liu G (2017) Irregular micro-sized Li1.2Mn0.54Ni0.13Co0.13O2 particles as cathode material with a high volumetric capacity for li-ion batteries. J Alloys Compd 695:2951–2958CrossRefGoogle Scholar
  11. 11.
    Liu G, Li S, Mei J, Liu L-M, Cui Y, Liu H (2017) New insights into low temperature properties of li-rich layered cathode materials. J Power Sources 353:51–57CrossRefGoogle Scholar
  12. 12.
    Li L, Wang L, Zhang X, Xue Q, Wei L, Wu F, Chen R (2017) 3D reticular Li1.2Ni0.2Mn0.6O2 cathode material for lithium-ion batteries. ACS Appl Mater Interfaces 9(2):1516–1523CrossRefGoogle Scholar
  13. 13.
    Abraham DP, Twesten RD, Balasubramanian M, Petrov I, McBreen J, Amine K (2002) Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells. Electrochem Commun 4(8):620–625CrossRefGoogle Scholar
  14. 14.
    Woo SU, Yoon CS, Amine K, Belharouak I, Sun YK (2007) Significant improvement of electrochemical performance of AlF3-coated LiNi0.8Co0.1Mn0.1O2 cathode materials. J Electrochem Soc 154:A1005CrossRefGoogle Scholar
  15. 15.
    Sun Y-K, Lee B-R, Noh H-J, Wu H, Myung S-T, Amine K (2011) A novel concentration-gradient Li[Ni0.83Co0.07Mn0.10]O2 cathode material for high-energy lithium-ion batteries. J Mater Chem 21:10108CrossRefGoogle Scholar
  16. 16.
    Noh H-J, Youn S, Yoon CS, Sun Y-K (2013) Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources 233:121–130CrossRefGoogle Scholar
  17. 17.
    Hwang S, Kim SM, Bak SM, Cho BW, Chung KY, Lee JY, Chang W, Stach EA (2014) Investigating local degradation and thermal stability of charged nickel-based cathode materials through real-time electron microscopy. ACS Appl Mater Interfaces 6(17):15140–15147CrossRefGoogle Scholar
  18. 18.
    Dixit M, Markovsky B, Schipper F, Aurbach D, Major DT (2017) Origin of structural degradation during cycling and low thermal stability of Ni-rich layered transition metal-based electrode materials. J Phys Chem C 121(41):22628–22636CrossRefGoogle Scholar
  19. 19.
    Wu L, Nam K-W, Wang X, Zhou Y, Zheng J-C, Yang X-Q, Zhu Y (2011) Structural origin of overcharge-induced thermal instability of Ni-containing layered-cathodes for high-energy-density lithium batteries. Chem Mater 23(17):3953–3960CrossRefGoogle Scholar
  20. 20.
    Hwang S, Chang W, Kim SM, Su D, Kim DH, Lee JY, Chung KY, Stach EA (2014) Investigation of changes in the surface structure of LixNi0.8Co0.15Al0.05O2 cathode materials induced by the initial charge. Chem Mater 26(2):1084–1092CrossRefGoogle Scholar
  21. 21.
    Huang B, Li X, Wang Z, Guo H, Shen L, Wang J (2014) A comprehensive study on electrochemical performance of Mn-surface-modified LiNi0.8Co0.15Al0.05O2 synthesized by an in situ oxidizing-coating method. J Power Sources 252:200–207CrossRefGoogle Scholar
  22. 22.
    Yang J, Xia Y (2016) Suppressing the phase transition of the layered Ni-rich oxide cathode during high-voltage cycling by introducing low-content Li2MnO3. ACS Appl Mater Interfaces 8(2):1297–1308CrossRefGoogle Scholar
  23. 23.
    Kim H-S, Kong M, Kim K, Kim I-J, Gu H-B (2007) Effect of carbon coating on LiNi1/3Mn1/3Co1/3O2 cathode material for lithium secondary batteries. J Power Sources 171(2):917–921CrossRefGoogle Scholar
  24. 24.
    Sun YK, Myung ST, Park BC, Prakash J, Belharouak I, Amine K (2009) High-energy cathode material for long-life and safe lithium batteries. Nat Mater 8(4):320–324CrossRefGoogle Scholar
  25. 25.
    Sun Y-K, Kim D-H, Yoon CS, Myung S-T, Prakash J, Amine K (2010) A novel cathode material with a concentration-gradient for high-energy and safe lithium-ion batteries. Adv Funct Mater 20(3):485–491CrossRefGoogle Scholar
  26. 26.
    Sun Y-K, Kim D-H, Jung H-G, Myung S-T, Amine K (2010) High-voltage performance of concentration-gradient Li[Ni0.67Co0.15Mn0.18]O2 cathode material for lithium-ion batteries. Electrochim Acta 55(28):8621–8627CrossRefGoogle Scholar
  27. 27.
    Chen Z, Qin Y, Amine K, Sun YK (2010) Role of surface coating on cathode materials for lithium-ion batteries. J Mater Chem 20(36):7606CrossRefGoogle Scholar
  28. 28.
    Lee D-J, Scrosati B, Sun Y-K (2011) Ni3(PO4)2-coated Li[Ni0.8Co0.15Al0.05]O2 lithium battery electrode with improved cycling performance at 55°C. J Power Sources 196(18):7742–7746CrossRefGoogle Scholar
  29. 29.
    Sun YK, Chen Z, Noh HJ, Lee DJ, Jung HG, Ren Y, Wang S, Yoon CS, Myung ST, Amine K (2012) Nanostructured high-energy cathode materials for advanced lithium batteries. Nat Mater 11(11):942–947CrossRefGoogle Scholar
  30. 30.
    Cho Y, Oh P, Cho J (2013) A new type of protective surface layer for high-capacity Ni-based cathode materials: nanoscaled surface pillaring layer. Nano Lett 13(3):1145–1152CrossRefGoogle Scholar
  31. 31.
    Yang X, Wang X, Hu L, Zou G, Su S, Bai Y, Shu H, Wei Q, Hu B, Ge L, Wang D, Liu L (2013) Layered Li[Ni0.5Co0.2Mn0.3]O2–Li2MnO3 core–shell structured cathode material with excellent stability. J Power Sources 242:589–596CrossRefGoogle Scholar
  32. 32.
    Noh JK, Kim S, Kim H, Choi W, Chang W, Byun D, Cho BW, Chung KY (2014) Mechanochemical synthesis of Li2MnO3 shell/LiMO2 (M=Ni,Co, Mn) core-structured nanocomposites for lithium-ion batteries. Sci Rep 4:4847CrossRefGoogle Scholar
  33. 33.
    Liu T, Zhao S-X, Wang K-Z, Gou L-L, Nan C-W (2015) Improved rate capability and cycle stability of Li[Ni0.5Co0.2Mn0.3]O2 with Li2MnO3 coating under high cut-off voltage. Appl Surf Sci 355:1222–1228CrossRefGoogle Scholar
  34. 34.
    Cho W, Kim S-M, Song JH, Yim T, Woo S-G, Lee K-W, Kim J-S, Kim Y-J (2015) Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating. J Power Sources 282:45–50CrossRefGoogle Scholar
  35. 35.
    Song B, Li W, Yan P, Oh S-M, Wang C-M, Manthiram A (2016) A facile cathode design combining Ni-rich layered oxides with li-rich layered oxides for lithium-ion batteries. J Power Sources 325:620–629CrossRefGoogle Scholar
  36. 36.
    Liang L, Jiang F, Cao Y, Hu G, Du K, Peng Z (2016) One strategy to enhance electrochemical properties of Ni-based cathode materials under high cut-off voltage for li-ion batteries. J Power Sources 328:422–432CrossRefGoogle Scholar
  37. 37.
    Oh P, Oh SM, Li W, Myeong S, Cho J, Manthiram A (2016) High-performance heterostructured cathodes for lithium-ion batteries with a Ni-rich layered oxide core and a li-rich layered oxide shell. Adv Sci 3:1600184CrossRefGoogle Scholar
  38. 38.
    Cho W, Kim S-M, Lee K-W, Song JH, Jo YN, Yim T, Kim H, Kim J-S, Kim Y-J (2016) Investigation of new manganese orthophosphate Mn3(PO4)2 coating for nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode and improvement of its thermal properties. Electrochim Acta 198:77–83CrossRefGoogle Scholar
  39. 39.
    Zhao Y, Li J, Dahn JR (2017) Interdiffusion of cations from metal oxide surface coatings into LiCoO2 during sintering. Chem Mater 29(12):5239–5248CrossRefGoogle Scholar
  40. 40.
    Li J, Doig R, Camardese J, Plucknett K, Dahn JR (2015) Measurements of interdiffusion coefficients of transition metals in layered li–Ni–Mn–co oxide core–shell materials during sintering. Chem Mater 27(22):7765–7773CrossRefGoogle Scholar
  41. 41.
    Mezaal MA, Qu L, Li G, Zhang R, Xuejiao J, Zhang K, Liu W, Lei L (2015) Promoting the cyclic and rate performance of lithium-rich ternary materials via surface modification and lattice expansion. RSC Adv 5(113):93048–93056CrossRefGoogle Scholar
  42. 42.
    Meng K, Wang Z, Guo H, Li X (2017) Enhanced cycling stability of LiNi0.8Co0.1Mn0.1O2 by reducing surface oxygen defects. Electrochim Acta 234:99–107CrossRefGoogle Scholar
  43. 43.
    Ying J, Wan C, Jiang C, Li Y (2001) Preparation and characterization of high-density spherical LiNi0.8Co0.2O2 cathode material for lithium secondary batteries. J Power Sources 99(1-2):78–84CrossRefGoogle Scholar
  44. 44.
    Liao J-Y, Manthiram A (2015) Surface-modified concentration-gradient Ni-rich layered oxide cathodes for high-energy lithium-ion batteries. J Power Sources 282:429–436CrossRefGoogle Scholar
  45. 45.
    Ding Y, Zhang P, Jiang Y, Gao D (2007) Effect of rare earth elements doping on structure and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 for lithium-ion battery. Solid State Ionics 178(13-14):967–971CrossRefGoogle Scholar
  46. 46.
    Cheng C, Tan L, Liu H, Huang X (2011) High rate performances of the cathode material LiNi1/3Co1/3Mn1/3O2 synthesized using low temperature hydroxide precipitation. Mater Res Bull 46(11):2032–2035CrossRefGoogle Scholar
  47. 47.
    Shim J-H, Kim C-Y, Cho S-W, Missiul A, Kim J-K, Ahn YJ, Lee S (2014) Effects of heat-treatment atmosphere on electrochemical performances of Ni-rich mixed-metal oxide (LiNi0.80Co0.15Mn0.05O2) as a cathode material for lithium ion battery. Electrochim Acta 138:15–21CrossRefGoogle Scholar
  48. 48.
    Cho E, Seo SW, Min K (2017) Theoretical prediction of surface stability and morphology of LiNiO2 cathode for li ion batteries. ACS Appl Mater Interfaces 9(38):33257–33266CrossRefGoogle Scholar
  49. 49.
    Lee Y, Kim H, Yim T, Lee K-Y, Choi W (2018) Compositional core-shell design by nickel leaching on the surface of Ni-rich cathode materials for advanced high-energy and safe rechargeable batteries. J Power Sources 400:87–95CrossRefGoogle Scholar
  50. 50.
    Hu G-R, Deng X-R, Peng Z-D, Du K (2008) Comparison of AlPO4 and Co3(PO4)2 coated LiNi0.8Co0.2O2 cathode materials for li-ion battery. Electrochim Acta 53(5):2567–2573CrossRefGoogle Scholar
  51. 51.
    Zeng Y, He J (2009) Surface structure investigation of LiNi0.8Co0.2O2 by AlPO4 coating and using functional electrolyte. J Power Sources 189(1):519–521CrossRefGoogle Scholar
  52. 52.
    Tan K, Reddy M, Rao G, Chowdari B (2005) Effect of AlPO4-coating on cathodic behaviour of li(Ni0.8Co0.2)O2. J Power Sources 141(1):129–142CrossRefGoogle Scholar
  53. 53.
    Li J, Wan L, Cao C (2016) A high-rate and long cycling life cathode for rechargeable lithium-ion batteries: hollow LiNi0.5Mn0.5O2 nano/micro hierarchical microspheres. Electrochim Acta 191:974–979CrossRefGoogle Scholar
  54. 54.
    Yang J, Guo B, He H, Li Y, Song C, Liu G (2017) LiNi0.5Mn0.5O2 hierarchical nanorods as high-capacity cathode materials for li-ion batteries. J Alloys Compd 698:714–718CrossRefGoogle Scholar
  55. 55.
    Wu F, Li Q, Bao L, Zheng Y, Lu Y, Su Y, Wang J, Chen S, Chen R, Tian J (2018) Role of LaNiO3 in suppressing voltage decay of layered lithium-rich cathode materials. Electrochim Acta 260:986–993CrossRefGoogle Scholar
  56. 56.
    Wu F, Tian J, Su Y, Wang J, Zhang C, Bao L, He T, Li J, Chen S (2015) Effect of Ni2+ content on lithium/nickel disorder for Ni-rich cathode materials. ACS Appl Mater Interfaces 7(14):7702–7708CrossRefGoogle Scholar
  57. 57.
    Zheng J, Kan WH, Manthiram A (2015) Role of Mn content on the electrochemical properties of nickel-rich layered LiNi0.8-xCo0.1Mn0.1+xO2 (0.0<x< 0.08) cathodes for lithium-ion batteries. ACS Appl Mater Interfaces 7(12):6926–6934CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chengdu Green Energy and Green Manufacturing Technology R&D Center, Chengdu Development Center of Science and TechnologyChina Academy of Engineering PhysicsChengduChina
  2. 2.College of Materials Science and EngineeringSichuan UniversityChengduChina
  3. 3.Department of Materials ScienceSichuan Engineering Technical CollegeDeyangChina
  4. 4.Institute of Electronic EngineeringChina Academy of Engineering PhysicsMianyangPeople’s Republic of China

Personalised recommendations