Journal of Solid State Electrochemistry

, Volume 23, Issue 1, pp 295–306 | Cite as

High-performance supercapacitor coin cell: polyaniline and nitrogen, sulfur-doped activated carbon electrodes in aqueous electrolyte

  • Susmitha Uppugalla
  • Palaniappan Srinivasan
Original Paper


We report herein a high energy density asymmetric supercapacitor cell consisting of polyaniline as a positive electrode and heteroatom-doped activated carbon as a negative electrode in aqueous sulfuric acid electrolyte. Polyaniline is prepared via oxidative polymerization of aniline using hydrothermally prepared manganese dioxide oxidant. Nitrogen and sulfur-doped activated carbon is prepared from AC by hydrothermal synthesis, employing ammonium thiocyanate as a heteroatom precursor. This asymmetric supercapacitor cell is cycled in the voltage range of 0 to 1.4 V, which exhibits an excellent performance with a high specific capacitance of 592 F g−1 and a high energy density of 80 W h kg−1 at a power density of 500 W kg−1, while symmetric cell configuration of individual components of polyaniline//polyaniline and activated carbon//activated carbon shows less performance, i.e., 35 W h kg−1 at 214 W kg−1 and 33 W h kg−1 at 286 W kg−1, respectively. Furthermore, asymmetric cells show good cycling stability retaining over 72% of its initial capacitance even after 10,000 continuous charge–discharge cycles at a higher discharge current, 5 mA. Practical device is demonstrated in the form of a CR2032 coin cell.

Graphical abstract


Heteroatom-doped carbon MnO2 Polyaniline Supercapacitor Self-discharge Hydrothermal synthesis 



We are thankful to Dr. S. Chandrasekhar, Director, and Dr. T. Shekharam, Head, PFM Division, CSIR-IICT, for their support and encouragement.

Funding information

We thank Department of Science & Technology, New Delhi, for funding under the project DST/TSG/PT/2011/179-G. Susmitha Uppugalla is thankful to UGC, India, for financial assistance.


  1. 1.
    Uppugalla S, Male U, Srinivasan P (2014) Design and synthesis of heteroatoms doped carbon/polyaniline hybrid material for high performance electrode in supercapacitor application. Electrochim Acta 146:242–248CrossRefGoogle Scholar
  2. 2.
    Zhang J, Jiang J, Li H, Zhao XS (2011) A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes. Energy Environ Sci 4(10):4009–4015CrossRefGoogle Scholar
  3. 3.
    López-salas N, Tamayo A, Fierro LG (2014) Sulfur-doped carbons prepared from eutectic mixtures containing hydroxymethylthiophene as metal-free oxygen reduction catalysts. ChemSusChem 7(12):3347–3355CrossRefGoogle Scholar
  4. 4.
    Zhang S, Miran MS, Ikoma A (2014) Protic ionic liquids and salts as versatile carbon precursors. J Am Chem Soc 136(5):1690–1693CrossRefGoogle Scholar
  5. 5.
    Wang C, Qiu JS (2013) Sustainable synthesis of phosphorus- and nitrogen-co-doped porous carbons with tunable surface properties for supercapacitors. J Power Sources 239:81–88CrossRefGoogle Scholar
  6. 6.
    Fechler N, Fellinger T, Antonietti M (2013) One-pot synthesis of nitrogen–sulfur-co-doped carbons with tunable composition using a simple isothiocyanate ionic liquid. J Mater Chem A 1(45):14097–14102CrossRefGoogle Scholar
  7. 7.
    Uppugalla S, Boddula R, Srinivasan P (2017) Methyl triphenylphosphonium permanganate as a novel oxidant for aniline to polyaniline-manganese (II, IV) oxide : material for high performance pseudocapacitor. J Solid State Electrochem 22:407–415CrossRefGoogle Scholar
  8. 8.
    Ballav N (2004) High-conducting polyaniline via oxidative polymerization of aniline by MnO2, PbO2 and NH4VO3. Mater Lett 58(26):3257–3260CrossRefGoogle Scholar
  9. 9.
    Sathish M, Mitani S, Tomai T, Honma I (2011) MnO2 assisted oxidative polymerization of aniline on graphene sheets : superior Nanocomposite electrodes for electrochemical supercapacitors. J Mater Chem View 21(40):16216–16222CrossRefGoogle Scholar
  10. 10.
    Liu Z, Li Z, Li D (2016) Use of manganese dioxide as oxidant in polymerization of aniline on carbon black for supercapacitor performance. High Perform Polym 28(10):1105–1113CrossRefGoogle Scholar
  11. 11.
    Yin B, Zhang S, Jiang H (2015) Phase-controlled synthesis of polymorphic MnO2 structures for electrochemical energy storage. J Mater Chem A 3(10):5722–5729CrossRefGoogle Scholar
  12. 12.
    Xi Y, Wei G, Liu X (2016) Enhancing the cycling stability of the polyaniline hybrids benefited from the hollow manganese dioxide/acetylene black skeleton. Chem Eng J 290:361–370CrossRefGoogle Scholar
  13. 13.
    Xie X, Gao L (2007) Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method. Carbon 45(12):2365–2373CrossRefGoogle Scholar
  14. 14.
    Palaniappan S, Rajender B, Umashankar M (2012) Controllable stereoselective synthesis of Cis or trans pyrano and furano tetrahydroquinolines: polyaniline-P-toluenesulfonate salt catalyzed one-pot Aza-Diels-Alder reactions. J Mol Catal A Chem 352:70–74CrossRefGoogle Scholar
  15. 15.
    Male U, Uppugalla S, Srinivasan P (2015) Effect of reduced graphene oxide-silica composite in polyaniline: electrode material for high-performance supercapacitor. J Solid State Electrochem 19(11):3381–3388CrossRefGoogle Scholar
  16. 16.
    Tsay K, Zhang L, Zhang J (2012) Effects of electrode layer composition/thickness and electrolyte concentration on both specific capacitance and energy density of supercapacitor. Electrochim Acta 60:428–436CrossRefGoogle Scholar
  17. 17.
    Stoller MD, Ruoff RS (2010) Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ Sci 3(9):1294–1301CrossRefGoogle Scholar
  18. 18.
    Cheng Q, Tang J, Shinya N, Qin L (2013) Polyaniline modified graphene and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density. J Power Sources 241:423–428CrossRefGoogle Scholar
  19. 19.
    Wu Z, Ren W, Wang D (2010) High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4(10):5835–5842CrossRefGoogle Scholar
  20. 20.
    Niu H, Zhou D, Yang X (2015) Towards three-dimensional hierarchical Zno nanofiber@Ni(OH)2 nanoflake core–shell heterostructures for high-performance asymmetric supercapacitors. J Mater Chem A 3(36):18413–18421CrossRefGoogle Scholar
  21. 21.
    Peng H, Mu J, Sun K, Lei Z (2014) Low-cost and high energy density asymmetric supercapacitors based on polyaniline nanotubes and MoO3 nanobelts. J Mater Chem A 2(27):10384–10388CrossRefGoogle Scholar
  22. 22.
    Tang P, Han L, Zhang L (2014) Facile synthesis of graphite/PEDOT/MnO2 composites on commercial supercapacitor separator membranes as flexible and high-performance supercapacitor electrodes. ACS Appl Mater Interfaces 6(13):10506–10515CrossRefGoogle Scholar
  23. 23.
    Han L, Tang P, Zhang L (2014) Hierarchical Co3O4@PPy@MnO2 core-shell-shell nanowire arrays for enhanced electro-chemical energy storage. Nano Energy 7:42–51CrossRefGoogle Scholar
  24. 24.
    Zhou C, Zhang Y, Li Y, Liu J (2013) Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett 13(5):2078–2085CrossRefGoogle Scholar
  25. 25.
    Xia M, Nie J, Zhang Z (2018) Suppressing self-discharge of supercapacitors via electrorheological effect of liquid crystals. Nano Energy 47:43–50CrossRefGoogle Scholar
  26. 26.
    Niu Z (2012) A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes. Energy Environ Sci 5(9):8726–8733CrossRefGoogle Scholar
  27. 27.
    Jin Y, Chen H, Chen M (2013) Graphene patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors. ACS Appl Mater Interfaces 5(8):3408–3416CrossRefGoogle Scholar
  28. 28.
    Yuan L, Lu X, Xiao X (2012) Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano 6(1):656–661CrossRefGoogle Scholar
  29. 29.
    Male U, Srinivasan P, Sydulu B (2015) Incorporation of polyaniline nanofibres on graphene oxide by interfacial polymerization pathway for supercapacitor. Int Nano Lett 5(4):231–240CrossRefGoogle Scholar
  30. 30.
    Gottam R, Srinivasan P (2015) One-step oxidation of aniline by peroxotitanium acid to polyaniline–titanium dioxide : a highly stable electrode for a supercapacitor. J Appl Polym Sci 132:41711–41718CrossRefGoogle Scholar
  31. 31.
    Bolagam R, Boddula R, Srinivasan P (2016) One-step preparation of sulfonated carbon and subsequent preparation of hybrid material with polyaniline salt : a promising supercapacitor electrode material. J Solid State Electrochem 21:1313–1322CrossRefGoogle Scholar
  32. 32.
    Shen J, Yang C, Li X, Wang G (2013) High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/graphene/carbon nanotube and activated graphene electrodes. ACS Appl Mater Interfaces 5(17):8467–8476CrossRefGoogle Scholar
  33. 33.
    Jun J, Bin L, Zhang J (2010) A novel polyaniline/mesoporous carbon nano-composite electrode for asymmetric supercapacitor. Chinese Chem Lett 21:1509–1512CrossRefGoogle Scholar
  34. 34.
    Gao L, Zhang L, Jia S (2016) Facile route to achieve hierarchical hollow MnO2 nanostructures. Electrochim Acta 203:59–65CrossRefGoogle Scholar
  35. 35.
    Salinas-Torres D, Sieben JM, Lozano-Castelló D (2013) Asymmetric hybrid capacitors based on activated carbon and activated carbon fibre–Pani electrodes. Electrochim Acta 89:326–333CrossRefGoogle Scholar
  36. 36.
    Hung P, Chang K, Lee Y (2010) Ideal asymmetric supercapacitors consisting of polyaniline nanofibers and graphene nanosheets with proper complementary potential windows. Electrochim Acta 55(20):6015–6021CrossRefGoogle Scholar
  37. 37.
    Basnayaka PA, Kumar A, Ram MK (2017) High performance asymmetric supercapacitors based on dual phosphorus (P) and nitrogen (N) co-doped carbon and graphene-polyaniline electrodes. ECS J Solid State Sci Technol 6(6):M3168–M3172CrossRefGoogle Scholar
  38. 38.
    Chen J (2013) Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers. Nano Lett 5:6053–6062Google Scholar
  39. 39.
    Lei Z, Chen Z, Zhao XS (2010) Growth of polyaniline on hollow carbon spheres for enhancing electrocapacitance. J Phys Chem C 114(46):19867–19874CrossRefGoogle Scholar
  40. 40.
    Heydari H, Gholivand MB (2016) An all-solid-state asymmetric device based on a polyaniline hydrogel for a high energy flexible supercapacitor. New J Chem 41:237–244CrossRefGoogle Scholar
  41. 41.
    Yu P, Zhang Z, Zheng L (2016) A novel sustainable flour derived hierarchical nitrogen- doped porous carbon/polyaniline electrode for advanced asymmetric supercapacitors. Adv Energy Mater 6(20):1601111–1601121CrossRefGoogle Scholar
  42. 42.
    Wu L, Hao L, Pang B (2017) MnO2 nanoflowers and polyaniline nanoribbons grown on hybrid graphene/Ni 3D scaffolds by in situ electrochemical techniques for high- performance asymmetric supercapacitors. J Mater Chem A 5(9):4629–4637CrossRefGoogle Scholar
  43. 43.
    Sydulu Singu B, Srinivasan P, Pabba S (2012) Benzoyl peroxide oxidation route to nano form polyaniline salt containing dual dopants for pseudocapacitor. J Electrochem Soc 159:A6–A13CrossRefGoogle Scholar
  44. 44.
    Male U, Kumar J, Modigunta R, Huh DS (2017) Design and synthesis of polyaniline-grafted reduced graphene oxide via azobenzene pendants for high-performance supercapacitors. Polymer 110:242–249CrossRefGoogle Scholar
  45. 45.
    Hughes M, Chen GZ, Shaffer MSP (2002) Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chem Mater 14(4):1610–1613CrossRefGoogle Scholar
  46. 46.
    Niu C, Sichel EK, Hoch R (1997) High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett 70(11):1480–1482CrossRefGoogle Scholar
  47. 47.
    Radhamani AV, Shareef KM, Rao MSR (2016) ZnO@MnO2 core-shell nanofiber cathodes for high performance asymmetric supercapacitors. ACS Appl Mater Interfaces 8(44):30531–30542CrossRefGoogle Scholar
  48. 48.
    Male U, Srinivasan P (2015) Improved electrochemical performances of polyaniline by graphitized mesoporus carbon : hybrid electrode for supercapacitor. J Appl Polym Sci 132:42540–42547Google Scholar
  49. 49.
    Lian K, Tian Q (2010) Solid asymmetric electrochemical capacitors using proton-conducting polymer electrolytes. Electrochem Commun 12(4):517–519CrossRefGoogle Scholar
  50. 50.
    Fan X, Lu Y, Xu H (2011) Reversible redox reaction on the oxygen-containing functional groups of an electrochemically modified graphite electrode for the pseudo-capacitance. J Mater Chem 21(46):18753–18760CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Polymers & Functional Materials DivisionCSIR – Indian Institute of Chemical TechnologyHyderabadIndia

Personalised recommendations