Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 1, pp 227–235 | Cite as

Electrochemical and photoelectrochemical properties of a hybrid film made of Ru(II) complex and Zn(II)-substituted tungstoborate

  • Huaiyao Ye
  • Rui Sun
  • Jianmin Qi
  • Lihua GaoEmail author
  • Kezhi WangEmail author
Original Paper

Abstract

A new hybrid film composed of Ru(II) polypyridyl complex cation of [(bpy)2Ru(L1)Ru(bpy)2]4+ {L1 = 1,6-bis-(2-(2-phenyl)benzimidazoyl)hexane, bpy = 2,2′-bipyridine, Ru1} and Zn(II)-substituted tungstoborate anion of [BW11Zn(H2O)O39]7− (BWZn) has been successfully prepared by electrostatic self-assembly technique and characterized by UV–visible absorption spectra, cycle voltammetry, electrochemical impedance spectra, as well as permeability of the films. Upon irradiation with white light, the hybrid films generated promptly stable and reproducible photocurrents which are related to applied potential, number of layer, and incident light intensity. The layer of BWZn anion as electron-transfer bridge layer can enhance photocurrent of the (BWZn/Ru1)n photoelectrochemical cell.

Keywords

Thin film Ruthenium(II) complex Polyoxometalate Photoelectrochemical property 

Notes

Acknowledgments

We acknowledge the financial support of Beijing Natural Science Foundation (2182028), the National Natural Science Foundation of China (21371018), Scientific Research Ability Promotion Plan of Graduate Student of Beijing Technology and Business University (2018), the Open Research Fund Program of Key Laboratory of Cosmetic (Beijing Technology and Business University), China National Light Industry (KLC-2018-YB2), and Analytical and Measurements Fund of Beijing Normal University.

Supplementary material

10008_2018_4121_MOESM1_ESM.docx (551 kb)
ESM 1 (DOCX 550 kb)

References

  1. 1.
    Ahmed I, Farha R, Goldmann M, Ruhlmann L (2013) Chem Commun 49(5):496–498CrossRefGoogle Scholar
  2. 2.
    Anwar N, Sartorel A, Yaqub M, Wearen K, Laffir F, Armstrong G, Dickinson C, Bonchio M, McCormac T (2014) ACS Appl Mater Interfaces 6(11):8022–8031CrossRefPubMedGoogle Scholar
  3. 3.
    Ardo S, Achey D, Morris AJ, Abrahamsson M, Meyer GJ (2011) J Am Chem Soc 133(41):16572–16580CrossRefPubMedGoogle Scholar
  4. 4.
    Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications. John Wiley & Sons, New YorkGoogle Scholar
  5. 5.
    Berben LA, Peters JC (2010) Chem Commun 46(3):398–400CrossRefGoogle Scholar
  6. 6.
    Bryce MR, Cooke G, Duclairoir FMA, John P, Perepichka DF, Polwart N, Rotello VM, Stoddart JF, Tseng HR (2003) J Mater Chem 13(9):2111–2117CrossRefGoogle Scholar
  7. 7.
    Cheng L, Cox JA (2002) Chem Mater 14(1):6–8CrossRefGoogle Scholar
  8. 8.
    Cheng Z, Cheng L, Gao Q, Dong S, Yang X (2002) J Mater Chem 12(6):1724–1729CrossRefGoogle Scholar
  9. 9.
    Chernyy S, Bousquet A, Torbensen K, Iruthayaraj J, Ceccato M, Pedersen SU, Daasbjerg K (2012) Langmuir 28(25):9573–9582CrossRefPubMedGoogle Scholar
  10. 10.
    Chevalier CL, Landis EC (2015) Langmuir 31(31):8633–8641CrossRefPubMedGoogle Scholar
  11. 11.
    Closs GL, Miller JR (1998) Science 240:440–447CrossRefGoogle Scholar
  12. 12.
    Douvas AM, Makarona E, Glezos N, Argitis P, Mielczarski JA, Mielczarski E (2008) ACS Nano 2(4):733–742CrossRefPubMedGoogle Scholar
  13. 13.
    Felts AK, Pollard WT, Freisner RA (1995) J Phys Chem 99(9):2929–2940CrossRefGoogle Scholar
  14. 14.
    Gao LH, Wang KZ, Cai L, Zhang HX, Jin LP, Huang CH, Gao HJ (2006) J Phys Chem B 110(14):7402–7408CrossRefPubMedGoogle Scholar
  15. 15.
    Gao LH, Hu XJ, Zhang DS, Guo Y, Wang KZ (2008) J Nanosci Nanotechnol 8:1355–1358PubMedGoogle Scholar
  16. 16.
    Gao LH, Wang YB, Bai LJ (2011) Spectrosc Spectr Anal 31:2192–2194Google Scholar
  17. 17.
    Gao LH, Lu S, Su JP, Wang KZ (2013) J Nanosci Nanotechnol 13(2):1377–1380CrossRefPubMedGoogle Scholar
  18. 18.
    Gao LH, Su JP, Zhang JN, Wang KZ (2015) J Mater Sci 50(24):8064–8072CrossRefGoogle Scholar
  19. 19.
    Hechavarria L, Mendoza N, Altuzar P, Hu HL (2010) J Solid State Electrochem 14(2):323–330CrossRefGoogle Scholar
  20. 20.
    Huo Z, Zang D, Yang S, Farha R, Goldmann M, Hasenknopf B, Xu H, Ruhlmann L (2015) Electrochim Acta 179:326–335CrossRefGoogle Scholar
  21. 21.
    Jiang K, Xie H, Zhan W (2009) Langmuir 25(18):11129–11136CrossRefPubMedGoogle Scholar
  22. 22.
    Kim YS, Liang K, Law KY, Whitten DG (1994) J Phys Chem 98(3):984–988CrossRefGoogle Scholar
  23. 23.
    Kowalewska B, Miecznikowski K, Makowski O, Palys B, Adamczyk L, Kulesza PJ (2007) J Solid State Electrochem 11(8):1023–1030CrossRefGoogle Scholar
  24. 24.
    Kullapere M, Marandi M, Matisen L, Mirkhalaf F, Carvalho AE, Maia G, Sammelselg V, Tammeveski K (2012) J Solid State Electrochem 16(2):569–578CrossRefGoogle Scholar
  25. 25.
    Laviron E (1979) J Electroanal Chem Interfacial Electrochem 101(1):19–28CrossRefGoogle Scholar
  26. 26.
    Lei IA, Lai DF, Don TM, Chen WC, Yu YY, Chiu WY (2014) Mater Chem Phys 144(1-2):41–48CrossRefGoogle Scholar
  27. 27.
    Mao X, Zhang JN, Gao LH, Su Y, Chen PX, Wang KZ (2016) J Nanosci Nanotechnol 16(4):3674–3678CrossRefPubMedGoogle Scholar
  28. 28.
    Meng TT, Xue LX, Wang H, Wang KZ, Haga MA (2017) J Mater Chem C 5(13):3390–3396CrossRefGoogle Scholar
  29. 29.
    Qi JM, Wang HL, Gao LH, Lin H, Wang KZ (2015) Mater Lett 153:33–35CrossRefGoogle Scholar
  30. 30.
    Sereno L, Silbeer JJ, Otero L, Bohorquez MDV, Moore AL, Moore TA, Gust D (1996) J Phys Chem 100(2):814–821CrossRefGoogle Scholar
  31. 31.
    Walsh JJ, Long DL, Cronin L, Bond AM, Forster RJ, Keyes TE (2011) Dalton Trans 40(9):2038–2045CrossRefPubMedGoogle Scholar
  32. 32.
    Walsh JJ, Mallon CT, Bond AM, Keyes TE, Forster RJ (2012) Chem Commun 48(30):3593–3595CrossRefGoogle Scholar
  33. 33.
    Walsh JJ, Zhu J, Zeng Q, Forster RJ, Keyes TE (2012) Dalton Trans 41(33):9928–9937CrossRefPubMedGoogle Scholar
  34. 34.
    Walsh JJ, Zhu J, Bond AM, Forster RJ, Keyes TE (2013) J Electroanal Chem 706:93–101CrossRefGoogle Scholar
  35. 35.
    Walsh JJ, Bond AM, Forster RJ, Keyes TE (2016) Coord Chem Rev 306:217–234CrossRefGoogle Scholar
  36. 36.
    Xiang X, Fielden J, Rodrίguez-Córdoba WE, Huang ZQ, Zhang NF, Luo Z, Musaev DG, Lian TQ, Hill CL (2013) J Phys Chem C 117(2):918–926CrossRefGoogle Scholar
  37. 37.
    Xue LX, Duan ZM, Jia J, Wang KZ, Haga MA (2014) Electrochim Acta 146:776–783CrossRefGoogle Scholar
  38. 38.
    Xue LX, Meng TT, Zhao Y, Gao LH, Wang KZ (2015) Electrochim Acta 172:77–87CrossRefGoogle Scholar
  39. 39.
    Yan B, Li Y, Calhoun SR, Cottrell NG, Lella DJ, Celestian AJ (2014) Inorg Chem Commun 43:23–36CrossRefGoogle Scholar
  40. 40.
    Yang YJ, Yu XH (2016) J Solid State Electrochem 20(6):1697–1704CrossRefGoogle Scholar
  41. 41.
    Yang W, Gao LH, Wang KZ (2014) Polyhedron 82:80–87CrossRefGoogle Scholar
  42. 42.
    Yang W, Zheng ZB, Meng TT, Wang KZ (2015) J Mater Chem A 3(7):3441–3449CrossRefGoogle Scholar
  43. 43.
    Ye HY, Qi JM, Sun R, Gao LH, Wang KZ (2017) Electrochim Acta 256:291–298CrossRefGoogle Scholar
  44. 44.
    Zhang YQ, Gao LH, Duan ZM, Wang KZ, Wang YL, Gao HJ (2004) Acta Chim Sin 62:738–741Google Scholar
  45. 45.
    Zhang YQ, Gao LH, Wang KZ, Gao HJ, Wang LY (2008) J Nanosci Nanotechnol 8:1248–1253PubMedGoogle Scholar
  46. 46.
    Zhang H, Gao Q, Li HX (2016) J Solid State Electrochem 20(6):1565–1573CrossRefGoogle Scholar
  47. 47.
    Zhang HL, Qi JM, Gao LH, Wang KZ (2016) Colloids Surf A Physicochem Eng Asp 492:119–126CrossRefGoogle Scholar
  48. 48.
    Zhao WH, Su JP, Ye HY, Gao LH, Wang KZ (2017) Mater Res Bull 92:1–8CrossRefGoogle Scholar
  49. 49.
    Zhu J, Zeng Q, O'Carroll S, Bond A, Keyes TE, Forster RJ (2011) Electrochem Commun 13(9):899–902CrossRefGoogle Scholar
  50. 50.
    Zhu J, Walsh JJ, Bond AM, Keyes TE, Forster RJ (2012) Langmuir 28(37):13536–13541CrossRefPubMedGoogle Scholar
  51. 51.
    Zhuang Y, Zhang D, Ju H (2005) Analyst 130(4):534–540CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Science, Key Laboratory of Cosmetic, China National Light IndustryBeijing Technology and Business UniversityBeijingChina
  2. 2.College of ChemistryBeijing Normal UniversityBeijingChina

Personalised recommendations