Journal of Solid State Electrochemistry

, Volume 23, Issue 1, pp 109–123 | Cite as

Premature degradation study of a cathode-supported solid oxide electrolysis cell

  • Aziz NechacheEmail author
  • Bernard A. Boukamp
  • Michel Cassir
  • Armelle RinguedéEmail author
Original Paper


Degradation-related issues are among the main limitations to make solid oxide electrolysis cells (SOEC) meet performance targets economically viable for long-term operation. In this study, the considered cell presents a premature degradation during electrolysis operation observed after sealing the cell holder and the support pieces providing and releasing H2 electrode gas. This premature degradation is characterized by unusual polarization curve slopes, and appearance of a new impedance contribution at the lowest frequencies of the impedance diagrams recorded. To the best of our knowledge, this new contribution has never been reported for SOECs. Post-mortem analysis of the cell by scanning electron microscopy (SEM)/energy dispersive X-ray (EDX) shows the presence of Si, Al, Na, K, and Ca at the H2 electrode interface (surface and first dozens microns in the volume) and at the Ni-yttria-stabilized zirconia (YSZ)/YSZ interface, contrary to similar cells tested before sealing the pieces. This degradation is related to Si deposition, notably at the Ni/YSZ/H2O triple phase boundaries. Concomitantly, the new contribution observed, leading to a beneficial effect on the cell functioning, is assimilated to a “reactivation” contribution. This reactivation contribution is associated with an H2O adsorption phenomenon and characterized by a relaxation frequency of [1–10 mHz] and a capacitance of ~ 100 F cm−2. The evolution with time of the resistive and capacitive contributions is consistent with the interpretation of the premature cell degradation. A mechanism explaining the cell behavior after this premature degradation is proposed.


Hydrogen Solid oxide electrolysis cell Electrochemical impedance spectroscopy Degradation Si impurities Reaction mechanisms 


Funding information

This work is supported by the French Research National Agency (ANR) through Hydrogène et piles à combustible program (project FIDELHYO n°ANR-09-HPAC-005).

Supplementary material

10008_2018_4116_MOESM1_ESM.docx (30 kb)
ESM 1 (DOCX 29 kb)
10008_2018_4116_MOESM2_ESM.docx (17 kb)
ESM 2 (DOCX 16 kb)
10008_2018_4116_MOESM3_ESM.docx (81 kb)
ESM 3 (DOCX 80 kb)


  1. 1.
    National Academy of Sciences, National Research Council (February 2004) The hydrogen economy: opportunities, costs, barriers. In: and R&D needsGoogle Scholar
  2. 2.
    Manage MN, Hodgson D, Milligan N, Simons SJR, Brett DJL (2011) Int J Hydrog Energy 36(10):5782–5796CrossRefGoogle Scholar
  3. 3.
    Nechache A, Cassir M, Ringuedé A (2014) J Power Sources 258:164–181CrossRefGoogle Scholar
  4. 4.
    Fischer GW, Gels HB, Gross F, Liemert K, Rohr FJ (1978) J Power Sources 3(4):331–345CrossRefGoogle Scholar
  5. 5.
    Elektrochemische Prozesse (1975) DECHEMA-StudieGoogle Scholar
  6. 6.
    Isenberg AO, Brecher LE (1970) Water vapor electrolysis at high temperatures, Westinghouse Electric Corp., Final Report, Project Fuel Cell, Rep. No. 57, Proc. First Int. Energy Agency Water Electrolysis Workshop. Brookhaven National Laboratory, Sept. 1975Google Scholar
  7. 7.
    Rohr FJ High temperature solid oxide fuel cells, Proc. Int. Energy Agency Workshop on Solid Electrolyte Fuel Cells. Brookhaven National Laboratory, May 1977Google Scholar
  8. 8.
    Isenberg AO (1981) Solid state Ionics 3/4:431–437Google Scholar
  9. 9.
    Maskalick NJ (1986) Int J Hydrog Energy 11(9):563–570CrossRefGoogle Scholar
  10. 10.
    Barbi GB, Mari CM (1981) Mater Chem 6(1):35–54CrossRefGoogle Scholar
  11. 11.
    Barbi GB, Mari CM (1982) Solid State Ionics 6(4):341–351CrossRefGoogle Scholar
  12. 12.
    Barbi GB, Mari CM Paper presented at the 4th Int. Conf. on Solid State Ionics. Grenoble (4–8 July 1983)Google Scholar
  13. 13.
    Barbi GB, Mari CM (1988) Solid State Ionics 26(3):243–250CrossRefGoogle Scholar
  14. 14.
    Barbi GB, Mari CM (1984) Int J Hydrog Energy 9(11):895–899CrossRefGoogle Scholar
  15. 15.
    Dönitz W, Schmidberger R, Steinheil E (1980) Int J Hydrog Energy 5(1):55–63CrossRefGoogle Scholar
  16. 16.
    Dönitz W, Schmidberger R (1982) Int J Hydrog Energy 7(4):321–330CrossRefGoogle Scholar
  17. 17.
    Dönitz W, Erdle E (1985) Int J Hydrog Energy 10(5):291–295CrossRefGoogle Scholar
  18. 18.
    Dönitz W, Dietrich G, Erdle E, Streicher R (1988) Int J Hydrog Energy 13(5):283–287CrossRefGoogle Scholar
  19. 19.
    Chen K, Hyodo J, Ai N, Ishihara T, Jiang SP (2016) Int J Hydrog Energy 41(3):1419–1431CrossRefGoogle Scholar
  20. 20.
    Hauch A, Jensen SH, Ramousse S, Mogensen M (2006) J Electrochem Soc 153(9):A1741–A1747CrossRefGoogle Scholar
  21. 21.
    Jensen SH, Hauch A, Hendriksen PV, Mogensen M, Bonanos N, Jacobsen T (2007) J Electrochem Soc 154(12):B1325–B1330CrossRefGoogle Scholar
  22. 22.
    Hauch A, Jensen SH, Mogensen M, Bilde-Sørensen JB (2007) J Electrochem Soc 154(7):A619–A626CrossRefGoogle Scholar
  23. 23.
    Hauch A, Ebbesen SD, Jensen SH, Mogensen M (2008) J Electrochem Soc 155(11):B1184–B1193CrossRefGoogle Scholar
  24. 24.
    Barfod R, Mogensen M, Klemenso T, Hagen A, Liu YL, Hendriksen PV (2007) J Electrochem Soc 154(4):B371–B378CrossRefGoogle Scholar
  25. 25.
    Barfod R, Mogensen M, Klemenso T, Hagen A, Liu YL, Hendriksen PV (2005) In: Singhal SC, Mizusaki J (eds) Solid Oxide Fuel Cells (SOFC IX), PV 2005–07, p 524. The Electrochemical Society Proceedings Series, Pennington, NJGoogle Scholar
  26. 26.
    Ebbesen SD, Graves C, Hauch A, Jensen SH, Mogensen M (2010) J Electrochem Soc 157(10):B1419–B1429CrossRefGoogle Scholar
  27. 27.
    Laguna-Bercero MA (2012) J Power Sources 203:4–16CrossRefGoogle Scholar
  28. 28.
    Moçoteguy P, Brisse A (2013) Int J Hydrog Energy 38(36):15887–15902CrossRefGoogle Scholar
  29. 29.
    Keane M, Fan H, Han M, Singh P (2014) Int J Hydrog Energy 39(33):18718–18726CrossRefGoogle Scholar
  30. 30.
    Chen K, Ai N, Jiang SP (2014) Int J Hydrog Energy 39(20):10349–10358CrossRefGoogle Scholar
  31. 31.
    Hjalmarsson P, Sun X, Liu YL, Chen M (2014) J Power Sources 262:316–322CrossRefGoogle Scholar
  32. 32.
    Chen T, Liu M, Yuan C, Zhou Y, Ye X, Zhan Z, Xia C, Wang S (2015) J Power Sources 276:1–6CrossRefGoogle Scholar
  33. 33.
    Knibbe R, Traulsen ML, Hauch A, Ebbesen SD, Mogensen M (2010) J Electrochem Soc 157(8):B1209–B1217CrossRefGoogle Scholar
  34. 34.
    Pan Z, Liu Q, Lyu R, Li P, Chan SH (2018) J Power Sources 378:571–578CrossRefGoogle Scholar
  35. 35.
    Duboviks V, Maher RC, Kishimoto M, Cohen LF, Brandon NP, Offer GJ (2014) Phys Chem Chem Phys 16(26):13063–13068CrossRefGoogle Scholar
  36. 36.
    Tao Y, Ebbesen SD, Mogensen MB (2014) J Electrochem Soc 161(3):F337–F343CrossRefGoogle Scholar
  37. 37.
    Tao Y, Ebbesen SD, Zhang W, Mogensen MB (2014) ChemCatChem 6:1220–1224Google Scholar
  38. 38.
    Skafte TL, Blennow P, Hjelm J, Graves C (2018) J Power Sources 373:54–60CrossRefGoogle Scholar
  39. 39.
    Duboviks V, Lomberg M, Maher RC, Cohen LF, Brandon NP, Offer GJ (2015) J Power Sources 293:912–921CrossRefGoogle Scholar
  40. 40.
    Zheng Y, Li Q, Chen T, Wu W, Xu C, Wang WG (2015) Int J Hydrog Energy 40(6):2460–2472CrossRefGoogle Scholar
  41. 41.
    Kim SJ, Kim KJ, Choi GM (2015) J Power Sources 284:617–622CrossRefGoogle Scholar
  42. 42.
    Hjalmarsson P, Sun X, Liu YL, Chen M (2013) J Power Sources 223:349–357CrossRefGoogle Scholar
  43. 43.
    Nechache A, Mansuy A, Petitjean M, Mougin J, Mauvy F, Boukamp BA, Cassir M, Ringuedé A (2016) Electrochim Acta 210:596–605CrossRefGoogle Scholar
  44. 44.
    Brisse A, Schefold J, Zahid M (2008) Int J Hydrog Energy 33(20):5375–5382CrossRefGoogle Scholar
  45. 45.
    Leonide A, Sonn V, Weber A, Ivers-Tiffée E (2008) J Electrochem Soc 155(1):B36–B41CrossRefGoogle Scholar
  46. 46.
    Dasari HP, Park SY, Kim J, Lee JH, Kim BK, Je HJ, Lee HW, Yoon KJ (2013) J Power Sources 240:721–728CrossRefGoogle Scholar
  47. 47.
    Fan H, Keane M, Singh P, Han M (2014) J Power Sources 268:634–639CrossRefGoogle Scholar
  48. 48.
    Schefold J, Brisse A, Zahid M (2009) J Electrochem Soc 156(8):B897–B904CrossRefGoogle Scholar
  49. 49.
    Wang W, Huang Y, Jung S, Vohs JM, Gorte RJ (2006) J Electrochem Soc 153(11):A2066–A2070CrossRefGoogle Scholar
  50. 50.
    Hanifi AR, Laguna-Bercero MA, Etsell TH, Sarkar P (2014) Int J Hydrog Energy 39(15):8002–8008CrossRefGoogle Scholar
  51. 51.
    Laguna-Bercero MA, Campana R, Larrea A, Kilner JA, Orera VM (2011) J Power Sources 196(21):8942–8947CrossRefGoogle Scholar
  52. 52.
    Jiang SP, Badwal SPS (1999) Solid State Ionics 123(1-4):209–224CrossRefGoogle Scholar
  53. 53.
    Laguna-Bercero MA, Kilner JA, Skinner SJ (2010) Chem Mater 22(3):1134–1141CrossRefGoogle Scholar
  54. 54.
    Chen S, Xie K, Dong D, Li H, Qin Q, Zhang Y, Wu Y (2015) J Power Sources 274:718–729CrossRefGoogle Scholar
  55. 55.
    Anderson JC, Leaver KD, Rawlings RD, Alexander JM (1990) Materials science. Chapmann & Hall, New YorkCrossRefGoogle Scholar
  56. 56.
    Doremus RH (1973) Glass science. John Wiley & Sons, New YorkGoogle Scholar
  57. 57.
    Holland L (1964) The properties of glass surface. Chapman and Hall, LondonGoogle Scholar
  58. 58.
    Butler EP, Drennan J (1982) J Am Ceram Soc 65(10):474–478CrossRefGoogle Scholar
  59. 59.
    Jewell JM, Spess MS, Shelby JE (1990) J Am Ceram Soc 73(1):132–135CrossRefGoogle Scholar
  60. 60.
    Jewell JM, Shelby JE (1990) J Cryst Growth 73:1446Google Scholar
  61. 61.
    Shelby JE, Mcvay GL (1976) J Non-Cryst Solids 20(3):439–449CrossRefGoogle Scholar
  62. 62.
    Mansuy A (2012) PhD Thesis, Université Bordeaux 1Google Scholar
  63. 63.
    Nechache A (2014) PhD thesis, Université Pierre et Marie Curie, ParisGoogle Scholar
  64. 64.
    Virkar AV (2007) J Power Sources 172(2):713–724CrossRefGoogle Scholar
  65. 65.
    van Hassel BA, Boukamp BA, Burggraaf AJ (1991) Solid State Ionics 48:139–154CrossRefGoogle Scholar
  66. 66.
    van Hassel BA, Boukamp BA, Burggraaf AJ (1991) Solid State Ionics 48:155–171CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.PSL Research University – Chimie-ParisTech – CNRSInstitut de Recherche de Chimie ParisParisFrance
  2. 2.Department of Science and Technology & MESA Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands
  3. 3.ISELausanneSwitzerland

Personalised recommendations