Journal of Solid State Electrochemistry

, Volume 23, Issue 1, pp 63–72 | Cite as

Microwave-assisted synthesis of Fe-doped NiMnO3 as electrode material for high-performance supercapacitors

  • Shaoming Qiao
  • Naibao HuangEmail author
  • Junjie Zhang
  • Yuanyuan Zhang
  • Yin Sun
  • Zhengyuan Gao
Original Paper


Fe-doped NiMnO3 nanosheet electrode material was successfully synthesized by convenient and efficient microwave-assisted hydrothermal method. The crystal structure, chemical composition, morphology, and specific surface area of the electrode material were analyzed by X-ray diffraction, Fourier transform infrared, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and Brunner–Emmet–Teller testing. Results showed that Fe doping changed not only the crystal structure but also the morphology of the NiMnO3 nanosheet electrode material. Moreover, the electrode material exhibited a high specific surface area and outstanding conductivity. Electrochemical performance was analyzed by cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy. The outcome of these experiments demonstrated that the Fe-doped NiMnO3 electrode material exhibited optimum electrochemical performance when the mass ratio was 15 wt%. The specific capacitance reached 732.7 F g−1 at a current density of 1 A g−1, and capacitance retention was approximately 78.3% after 10,000 cycles at 3 A g−1. The Fe-doped NiMnO3 electrode material is thus a promising next-generation supercapacitor material because of its high specific capacitance and long cycle life.


Supercapacitor Fe-doped NiMnO3 Electrode material Microwave-assisted hydrothermal 


Funding information

This work was financially supported by the National Key Research and Development Program of China (2016YFB0101206) and the Dalian Science and Technology Innovation Funds (2018J12GX053).


  1. 1.
    Aricò AS, Bruce P, Scrosati B, Tarascon JM, Van SW (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4(5):366–377CrossRefGoogle Scholar
  2. 2.
    Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321(5889):651–652CrossRefGoogle Scholar
  3. 3.
    Dubal DP, Gomez-Romero P, Sankapal BR, Holze R (2015) Nickel cobaltite as an emerging material for supercapacitors: an overview. Nano Energy 11:377–399CrossRefGoogle Scholar
  4. 4.
    Umeshbabu E, Rajeshkhanna G, Justin P, Rao GR (2015) Synthesis of mesoporous NiCo2O4-rGO by solvothermal method for charge storage applications. RSC Adv 5(82):66657–66666CrossRefGoogle Scholar
  5. 5.
    Chen Q, Meng Y, Hu C, Zhao Y, Shao H, Chen N, Qu L (2014) MnO2-modified hierarchical graphene fiber electrochemical supercapacitor. J Power Sources 247:32–39CrossRefGoogle Scholar
  6. 6.
    Fu Y, Cai X, Wu H, Lv Z, Hou S, Peng M, Yu X, Zou D (2012) Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv Mater 24(42):5713–5718CrossRefGoogle Scholar
  7. 7.
    Yu C, Masarapu C, Rong J, Wei B, Jiang H (2010) Stretchable supercapacitors based on buckled single-walled carbon-nanotube macrofilms. Adv Mater 21:4793–4797CrossRefGoogle Scholar
  8. 8.
    Lu X, Yu M, Zhai T, Wang G, Xie S, Liu T, Liang C, Tong Y, Li Y (2013) High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett 13(6):2628–2633CrossRefGoogle Scholar
  9. 9.
    Huang ZD, Zhang B, Oh SW, Zheng QB, Lin XY, Yousefi N, Kim JK (2012) Self-assembled reduced graphene oxide/carbon nanotube thin films as electrodes for supercapacitors. J Mater Chem 22(8):3591–3599CrossRefGoogle Scholar
  10. 10.
    Ramya R, Sivasubramanian R, Sangaranarayanan MV (2013) Conducting polymers-based electrochemical supercapacitors—Progress and prospects. Electrochim Acta 101:109–129CrossRefGoogle Scholar
  11. 11.
    Gao X, Zhang Y, Huang M, Li F, Hua C, Yu L, Zheng H (2014) Facile synthesis of Co3O4@NiCo2O4 core–shell arrays on Ni foam for advanced binder-free supercapacitor electrodes. Ceram Int 40(10):15641–15646CrossRefGoogle Scholar
  12. 12.
    Kang J, Hirata A, Kang L, Zhang X, Hou Y, Chen L, Li C, Fujita T, Akagi K, Chen M (2013) Enhanced supercapacitor performance of MnO2 by atomic doping. Angew Chemie 52(6):1664–1667CrossRefGoogle Scholar
  13. 13.
    Cai G, Tu J, Zhou D, Zhang J, Xiong Q, Zhao X, Wang X, Gu C (2013) Multicolor electrochromic film based on TiO2@polyaniline core/shell nanorod array. J Phys Chem C 117(31):15967–15975CrossRefGoogle Scholar
  14. 14.
    Zhou C, Zhang Y, Li Y, Liu J (2013) Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett 13(5):2078–2085CrossRefGoogle Scholar
  15. 15.
    Tian W, Wang X, Zhi C, Zhai T, Liu D, Zhang C, Golberg D, Bando Y (2013) Ni(OH)2 nanosheet@Fe2O3 nanowire hybrid composite arrays for high-performance supercapacitor electrodes. Nano Energy 2(5):754–763CrossRefGoogle Scholar
  16. 16.
    Zhang X, Shi W, Zhu J, Zhao W, Ma J, Mhaisalkar S, Maria TL, Yang Y, Zhang H, Hng HH (2010) Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Res 3(9):643–652CrossRefGoogle Scholar
  17. 17.
    Xiao Y, Liu S, Feng L, Zhang A, Zhao J, Fang S, Jia D (2012) 3D Hierarchical Co3O4 Twin-Spheres with an Urchin-Like Structure: Large-scale synthesis, multistep-splitting growth, and electrochemical pseudocapacitors. Adv Funct Mater 22:4052–4059CrossRefGoogle Scholar
  18. 18.
    Du W, Liu R, Jiang Y, Lu Q, Fan Y, Gao F (2013) Facile synthesis of hollow Co3O4 boxes for high capacity supercapacitor. J Power Sources 227:101–105CrossRefGoogle Scholar
  19. 19.
    Saravanakumar B, Purushothaman KK, Muralidharan G (2012) Interconnected V2O5 nanoporous network for high-performance supercapacitors. ACS Appl Mater Interfaces 4(9):4484–4490CrossRefGoogle Scholar
  20. 20.
    Wee G, Soh HZ, Yan LC, Mhaisalkar SG, Srinivasan M (2010) Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes. J Mater Chem 20(32):6720–6725CrossRefGoogle Scholar
  21. 21.
    Kulal PM, Dubal DP, Lokhande CD, Fulari VJ (2011) Chemical synthesis of Fe2O3 thin films for supercapacitor application. J Alloys Compd 509(5):2567–2571CrossRefGoogle Scholar
  22. 22.
    Zhu Y, Wu Z, Jing M, Hou H, Yang Y, Zhang Y, Yang X, Song W, Jia X, Ji X (2014) Porous NiCo2O4 spheres tuned through carbon quantum dots utilised as advanced materials for an asymmetric supercapacitor. J Mater Chem A 3:866–877CrossRefGoogle Scholar
  23. 23.
    Wang C, Zhou E, He W, Deng X, Huang J, Ding M, Wei X, Liu X, Xu X (2017) NiCo2O4-based supercapacitor nanomaterials. Nanomaterials 7:41CrossRefGoogle Scholar
  24. 24.
    Zhang G, Lou XW (2013) General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv Mater 25(7):975–975CrossRefGoogle Scholar
  25. 25.
    Tholkappiyan R, Naveen AN, Sumithra S, Vishista K (2015) Investigation on spinel MnCo2O4 electrode material prepared via controlled and uncontrolled synthesis route for supercapacitor application. J Mater Sci 50(17):5833–5843CrossRefGoogle Scholar
  26. 26.
    Che H, Liu A, Mu J, Wu C, Zhang X (2016) Template-free synthesis of novel flower-like MnCo2O4 hollow microspheres for application in supercapacitors. Ceram Int 42(2):2416–2424CrossRefGoogle Scholar
  27. 27.
    Karthikeyan K, Kalpana D, Renganathan NG (2009) Synthesis and characterization of ZnCo2O4 nanomaterial for symmetric supercapacitor applications. Ionics 15(1):107–110CrossRefGoogle Scholar
  28. 28.
    Guan B, Guo D, Hu L, Zhang G, Fu T, Ren W, Li J, Li Q (2014) Facile synthesis of ZnCo2O4 nanowire cluster arrays on Ni foam for high-performance asymmetric supercapacitors. J Mater Chem A 2(38):16116–16123CrossRefGoogle Scholar
  29. 29.
    Cai D, Wang D, Liu B, Wang Y, Liu Y, Wang L, Li H, Huang H, Li Q, Wang T (2013) Comparison of the electrochemical performance of NiMoO4 nanorods and hierarchical nanospheres for supercapacitor applications. Appl Mater Interfaces 5(24):12905–12910CrossRefGoogle Scholar
  30. 30.
    Xiao J, Wan L, Yang S, Xiao F, Wang S (2014) Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 14(2):831–838CrossRefGoogle Scholar
  31. 31.
    Kakvand P, Rahmanifar MS, El-Kady MF, Pendashteh A, Kiani MA, Hashami M, Najafi M, Abbasi A, Mousavi MF, Kaner RB (2016) Synthesis of NiMnO3/C nano-composite electrode materials for electrochemical capacitors. Nanotechnol 27(31):315401CrossRefGoogle Scholar
  32. 32.
    Mehandjiev D, Naydenov A, Ivanov G (2001) Ozone decomposition, benzene and co oxidation over NiMnO3-ilmenite and NiMn2O4-spinel catalysts. Appl Catal A 206(1):13–18CrossRefGoogle Scholar
  33. 33.
    Lassoued A, Lassoued MS, Dkhil B, Ammar S, Gadri A (2018) Synthesis, structural, morphological, optical and magnetic characterization of iron oxide (α-Fe2O3 ) nanoparticles by precipitation method: effect of varying the nature of precursor. Phys E (Amsterdam Neth) 97:328–334CrossRefGoogle Scholar
  34. 34.
    Guan Y, Yin C, Cheng X, Liang X, Diao Q, Zhang H, Lu G (2014) Sub-ppmH2S sensor based on YSZ and hollow balls NiMn2O4 sensing electrode. Sensors Actuators B Chem 193:501–508CrossRefGoogle Scholar
  35. 35.
    Chen Y, Ni D, Yang X, Liu C, Yin J, Cai K (2018) Microwave-assisted synthesis of honeycomblike hierarchical spherical Zn-doped Ni-MOF as a high-performance battery-type supercapacitor electrode material. Electrochim Acta 278:114–123CrossRefGoogle Scholar
  36. 36.
    Zhang M, Guo S, Zheng L, Zhang G, Hao Z, Kang L, Liu ZH (2013) Preparation of NiMn2O4 with large specific surface area from an epoxide-driven sol−gel process and its capacitance. Electrochim Acta 87:546–553CrossRefGoogle Scholar
  37. 37.
    Li W, Cui X, Zeng R, Du G, Sun Z, Zheng R, Ringer SP, Dou SX (2015) Performance modulation of α-MnO2 nanowires by crystal facet engineering. Sci Rep 5(1):8987CrossRefGoogle Scholar
  38. 38.
    Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254(8):2441–2449CrossRefGoogle Scholar
  39. 39.
    Belous A, Kolbasov G, Kovalenko L, Boldyrev E, Kobylianska S, Liniova B (2018) All solid-state battery based on ceramic oxide electrolytes with perovskite and NASICON structure. J Solid State Electrochem 22(8):2315–2320CrossRefGoogle Scholar
  40. 40.
    Wang L, Wang X, Xiao X, Xu F, Sun Y, Li Z (2013) Reduced graphene oxide/nickel cobaltite nanoflake composites for high specific capacitance supercapacitors. Electrochim Acta 111:937–945CrossRefGoogle Scholar
  41. 41.
    Patil AM, Lokhande AC, Chodankar NR, Kumbhar VS, Lokhande CD (2016) Engineered morphologies of β-NiS thin films via anionic exchange process and their supercapacitive performance. Mater Des 97:407–416CrossRefGoogle Scholar
  42. 42.
    Li B, Xiao Z, Chen M, Huang Z, Tie X, Zai J, Qian X (2017) Rice husk-derived hybrid lithium-ion capacitors with ultra-high energy. J Mater Chem A 5(46):24502–24507CrossRefGoogle Scholar
  43. 43.
    Fang Z, Peng L, Qian Y, Zhang X, Xie Y, Cha JJ et al (2018) Dual tuning of ni-co-a (a = p, se, o) nanosheets by anion substitution and holey engineering for efficient hydrogen evolution. J Am Chem Soc 140:15Google Scholar
  44. 44.
    Chen M, Li B, Liu X, Zhou L, Yao L, Zai J, … & Yu X (2018) Boron-doped porous Si anode materials with high initial coulombic efficiency and long cycling stability. J Mater Chem A 6(7): 3022–3027Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shaoming Qiao
    • 1
  • Naibao Huang
    • 1
    Email author
  • Junjie Zhang
    • 1
  • Yuanyuan Zhang
    • 1
  • Yin Sun
    • 1
  • Zhengyuan Gao
    • 1
  1. 1.Department of Materials Science and EngineeringDalian Maritime UniversityDalianPeople’s Republic of China

Personalised recommendations