Journal of Solid State Electrochemistry

, Volume 23, Issue 1, pp 81–89 | Cite as

MOF-derived binary mixed carbon/metal oxide porous materials for constructing simultaneous determination of hydroquinone and catechol sensor

  • Ziyan Wang
  • Meishan Li
  • Yingxiang Ye
  • Yisi Yang
  • Yaqi Lu
  • Xiuling MaEmail author
  • Zhangjing Zhang
  • Shengchang XiangEmail author
Original Paper


It is a top priority to simultaneously and accurately detect hydroquinone (HQ) and catechol (CC). Here, a new strategy for constructing simultaneous determination of HQ and CC sensor was proposed by one-step pyrolysis of MIL series metal-organic frameworks materials (MIL-125 (Ti), MIL-101 (Cr), and MIL-101 (Fe)) to obtain uniform-mixed carbon/metal oxide porous materials (TiO2/C900, Cr2O3/C900, and Fe2O3/C900, respectively). And, cyclic voltammetry (CV) was utilized to investigate the electrochemical behavior of the composite materials. It was found that the simultaneous detection of catechol (CC) and hydroquinone (HQ) could be achieved by the sensor consisted of TiO2/C900 with the superior BET-specific surface area and micro-mesoporous characteristics. And, the linear range and detection limit of HQ and CC for the TiO2/C900 sensor were further studied. In addition, it was also found that the pyrolysis temperature and metal centers would affect the internal structures and component of the materials, thus affecting the properties of materials. The experiment provides a new idea for optimizing the simultaneous detection of the dihydroxybenzene isomers.

Graphical abstract

A new feasible strategy was proposed by introducing the binary uniform-mixed carbon/metal oxide porous materials, by which the calcination temperature and the metal centers of MOFs would be considered to construct the sensor for simultaneous determination of catechol (CC) and hydroquinone (HQ).


Metal-organic frameworks Pyrolysis derivatives Dihydroxybenzene Electrochemical sensor 



The authors gratefully acknowledge the financial supports of the National Natural Science Foundation of China (21207018, 21673039, and 21573042), Natural Science Foundation of Fujian Province (2015J01039, 2018J07001), and Environment and Land Resources Bureau of Pingtan Comprehensive Experimentation Area (DH-1374).

Supplementary material

10008_2018_4111_MOESM1_ESM.doc (1.2 mb)
ESM 1 (DOC 1265 kb)


  1. 1.
    Figueiredo EC, Tarley CRT, Kubota LT, Rath S, Arruda M (2007) A Z Microchem J 85(2):290–296CrossRefGoogle Scholar
  2. 2.
    Prathap MUA, Satpati B, Srivastava R (2013) Sensors Actuators B Chem 186:67–77CrossRefGoogle Scholar
  3. 3.
    Taysse L, Troutaud D, Khan NA, Deschaux P (1995) Toxicol 98(1-3):207–214CrossRefGoogle Scholar
  4. 4.
    Song D, Xia J, Zhang F, Bi S, Xiang W, Wang Z, Xia L, Xia Y, Li Y, Xia LH (2015) Sensors Actuators B Chem 206:111–118CrossRefGoogle Scholar
  5. 5.
    Nagaraja P, Vasantha RA, Sunitha KR (2001) J Pharm Biomed Anal 25(3-4):417–424CrossRefPubMedGoogle Scholar
  6. 6.
    Asan A, Isildak I (2003) J Chromatogr A 988(1):145–149CrossRefPubMedGoogle Scholar
  7. 7.
    Moldoveanu SC, Kiser M (2007) J Chromatogr A 1141(1):90–97CrossRefPubMedGoogle Scholar
  8. 8.
    Pistonesi MF, Di NM, Centurión ME, Palomeque ME, Lista AG, Fernández Band BS (2006) Talanta 69(5):1265–1268CrossRefGoogle Scholar
  9. 9.
    Ding YP, Liu WL, Wu QS, Wang XG (2005) J Electroanal Chem 575(2):275–280CrossRefGoogle Scholar
  10. 10.
    Liu X, Li Y, Liu X, Zeng X, Kong B, Luo S (2012) J Solid State Electrochem 16(3):883–889CrossRefGoogle Scholar
  11. 11.
    Si W, Lei W, Zhang Y, Xia M, Wang F, Hao Q (2012) Electrochim Acta 85:295–301CrossRefGoogle Scholar
  12. 12.
    Nagaraja P, Vasantha RA, Sunitha KR (2001) J Pharm Biomed Anal 25(3-4):417–424CrossRefPubMedGoogle Scholar
  13. 13.
    Zhao C, Song JF, Zhang JC (2002) Anal Bioanal Chem 374(3):498–504CrossRefPubMedGoogle Scholar
  14. 14.
    Carvalho RMD, Mello C, Kubota LT (2000) Anal Chim Acta 420(1):109–121CrossRefGoogle Scholar
  15. 15.
    Xu CX, Huang KJ, Fan Y, Wu ZW, Li J, Gan T (2012) Mater Sci Eng C 32(4):969–974CrossRefGoogle Scholar
  16. 16.
    Chen X, Wu G, Chen J, Chen X, Xie Z, Wang X (2011) J Am Chem Soc 133(11):3693–3695CrossRefPubMedGoogle Scholar
  17. 17.
    Lv X, Zhang G, Fu W (2012) Procedia Eng 27:570–576CrossRefGoogle Scholar
  18. 18.
    Bao S, Li CM, Zang J, Cui X, Qiao Y, Guo J (2010) Adv Funct Mater 18:591–599CrossRefGoogle Scholar
  19. 19.
    White RJ, Luque R, Budarin VL, Clark JH, Macquarrie DJ (2009) Cheminform 40:481Google Scholar
  20. 20.
    Wang YJ, Wilkinson DP, Zhang J (2011) Chem Rev 111(12):7625–7651CrossRefPubMedGoogle Scholar
  21. 21.
    Yin H, Tang H, Wang D, Gao Y, Tang Z (2012) ACS Nano 9:8288CrossRefGoogle Scholar
  22. 22.
    Wu B, Hu D, Kuang Y, Yu Y, Zhang X, Chen J (2011) Chem Commun 47(18):5253–5255CrossRefGoogle Scholar
  23. 23.
    Ziyatdinova G, Morozov M, Budnikov H, Grazhulene S, Red’Kin A (2012) J Solid State Electrochem 16(1):127–134CrossRefGoogle Scholar
  24. 24.
    Yang Y, Ren Y, Sun C, Hao S (2014) Green Chem 16(4):2273–2280CrossRefGoogle Scholar
  25. 25.
    Wang L, Zhang Y, Du Y, Lu D, Zhang Y, Wang C (2012) J Solid State Electrochem 16(4):1323–1331CrossRefGoogle Scholar
  26. 26.
    Ma XM, Liu ZN, Qiu CC (2013) Microchim Acta 180(5-6):461–468CrossRefGoogle Scholar
  27. 27.
    Lee J, Kim J, Hyeon T (2011) Adv Mater 18:2073–2094CrossRefGoogle Scholar
  28. 28.
    Zhang Y, Zeng L, Bo X, Wang H, Guo L (2012) Anal Chim Acta 752:45–52CrossRefPubMedGoogle Scholar
  29. 29.
    Wang W, Yang K, Gaillard J, Bandaru P, Rao A (2010) Adv Mater 20:179–182CrossRefGoogle Scholar
  30. 30.
    Zhang Y, Xiao S, Xie J, Yang Z, Pang P, Gao Y (2014) Sensors Actuators B Chem 204:102–108CrossRefGoogle Scholar
  31. 31.
    Zhang JP, Zhang YB, Lin JB, Chen XM (2012) Chem Rev 112(2):1001–1033CrossRefPubMedGoogle Scholar
  32. 32.
    Li ZY, Zhang ZJ, Ye YX, Cai KC, Du FF, Zeng H, Tao J, Lin QJ, Zheng Y, Xiang SC (2017) J Mater Chem A 5(17):7816–7824CrossRefGoogle Scholar
  33. 33.
    Li WH, Ding K, Tian HR (2017) Adv Funct Mater 27(27):1702067CrossRefGoogle Scholar
  34. 34.
    Hou CT, Xu Q, Yin LN, Hu XY (2012) Analyst 137:5083Google Scholar
  35. 35.
    Liu B, Shioyama H, Akita T (2008) J Am Chem Soc 130(16):5390–5391CrossRefPubMedGoogle Scholar
  36. 36.
    Lai T, Cai W, Dai W, Ye J (2014) Electrochim Acta 138:48–55CrossRefGoogle Scholar
  37. 37.
    Chen L, Tang Y, Wang K, Liu C, Luo S (2011) Electrochem Commun 13(2):133–137CrossRefGoogle Scholar
  38. 38.
    Zhou J, Li X, Yang L, Yan S, Wang M, Cheng D, Chen Q, Dong Y, Liu P, Cai W, Zhang C (2015) J Anal Chim Acta 899:57–65CrossRefGoogle Scholar
  39. 39.
    Huang YH, Chen JH, Sun X, Su ZB, Xing HT, Hu SR, Weng W, Guo HX, Wu WB, He YS (2015) Sensors Actuators B Chem 212:165–173CrossRefGoogle Scholar
  40. 40.
    Feng S, Zhang Y, Zhong Y, Li Y, Li S (2014) J Electroanal Chem 733:1–5CrossRefGoogle Scholar
  41. 41.
    Nematollahi D, Alimoradi M, Husain SW (2004) Electroanalysis 16(16):1359–1365CrossRefGoogle Scholar
  42. 42.
    Zhang Y, Zheng JB (2007) Electrochim Acta 52:7210–7216Google Scholar
  43. 43.
    Nematollahi D, Ariapad A, Rafiee M (2007) J Electroanal Chem 602:37–42Google Scholar
  44. 44.
    Shanmugam VM, Kulangiappar K, Ramaprakash M, Vasudevan D, Kumar RS, Velayutham D, Raju T (2017) Tetrahedron Lett 58:2294–2297Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials ScienceFujian Normal UniversityFuzhouPeople’s Republic of China

Personalised recommendations