Journal of Solid State Electrochemistry

, Volume 23, Issue 1, pp 9–17 | Cite as

Carbon fiber-bridged polyaniline/graphene paper electrode for a highly foldable all-solid-state supercapacitor

  • Ningning Song
  • Huijun Tan
  • Yaping ZhaoEmail author
Original Paper


A simple, scalable approach is developed to fabricate a flexible hybrid paper electrode composed of the polyaniline/graphene and the carbon fiber (CF)-reinforced bacterial cellulose. The prepared hybrid paper presents high areal capacitance of 4.145 F cm−2 at 5 mA cm−2 and an extremely low sheet resistance of 29.7 Ω sq.−1. The CF endows the paper electrode remarkable foldability with no mechanical destruction. Even after being repeatedly bent 180° up to 1000 times, the initial capacitance can be retained up to 98%. A fabricated all-solid-state supercapacitor based on the resulting paper electrode has an excellent areal capacitance of 630 mF cm−2 and energy density of 2.8 mWh cm−3. The results confirm that this approach can fabricate the highly foldable and shape-tailorable energy storage devices and may have wide potential applications.


Carbon fiber Graphene Foldable supercapacitor Polyaniline Bacterial cellulose 



We are thankful to the Instrumental Analysis Center of SJTU for SEM measurements.

Funding information

This study was financially supported by the National Natural Science Foundation of China (Grants No. 21576165).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10008_2018_4109_MOESM1_ESM.docx (786 kb)
ESM 1 (DOCX 786 kb)


  1. 1.
    Gao S, Sun Y, Lei F, Liang L, Liu J, Bi W, Pan B, Xie Y (2014) Ultrahigh energy density realized by a single-layer β-Co(OH)2 all-solid-state asymmetric supercapacitor. Angew Chem Int Ed 53(47):12789–12793CrossRefGoogle Scholar
  2. 2.
    Jiang L, Sheng L, Long C, Wei T, Fan Z (2015) Functional pillared graphene frameworks for ultrahigh volumetric performance supercapacitors. Adv Energy Mater 5(15):1500771CrossRefGoogle Scholar
  3. 3.
    Yu D, Goh K, Wang H, Wei L, Jiang W, Zhang Q, Dai L, Chen Y (2014) Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nat Nanotechnol 9(7):555–562CrossRefGoogle Scholar
  4. 4.
    Nam I, Kim G-P, Park S, Han JW, Yi J (2014) All-solid-state, origami-type foldable supercapacitor chips with integrated series circuit analogues. Energy Environ Sci 7(3):1095–1102CrossRefGoogle Scholar
  5. 5.
    Ge D, Yang L, Fan L, Zhang C, Xiao X, Gogotsi Y, Yang S (2015) Foldable supercapacitors from triple networks of macroporous cellulose fibers, single-walled carbon nanotubes and polyaniline nanoribbons. Nano Energy 11:568–578CrossRefGoogle Scholar
  6. 6.
    Cheng Y, Huang L, Xiao X, Yao B, Yuan L, Li T, Hu Z, Wang B, Wan J, Zhou J (2015) Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode. Nano Energy 15:66–74CrossRefGoogle Scholar
  7. 7.
    Li S, Huang D, Yang J, Zhang B, Zhang X, Yang G, Wang M, Shen Y (2014) Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices. Nano Energy 9:309–317CrossRefGoogle Scholar
  8. 8.
    Foo CY, Sumboja A, Tan DJH, Wang J, Lee PS (2014) Flexible and highly scalable V2O5-rGO electrodes in an organic electrolyte for supercapacitor devices. Adv Energy Mater 4:3412–3420CrossRefGoogle Scholar
  9. 9.
    Gao K, Shao Z, Wu X, Wang X, Zhang Y, Wang W, Wang F (2013) Based transparent flexible thin film supercapacitors. Nanoscale 5(12):5307–5311CrossRefGoogle Scholar
  10. 10.
    El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074):1326–1330CrossRefGoogle Scholar
  11. 11.
    Lan W, Sun Y, Chen Y, Wang J, Tang G, Dou W, Su Q, Xie E (2015) Ultralight and flexible supercapacitor electrodes made from Ni(OH)2 nanosheets doped with Ag nanoparticle/3D graphene composite. RSC Adv 5(27):20878–20883CrossRefGoogle Scholar
  12. 12.
    Kalambate PK, Dar RA, Karna SP, Srivastava AK (2015) High performance supercapacitor based on graphene-silver nanoparticles-polypyrrole nanocomposite coated on glassy carbon electrode. J Power Sources 276:262–270CrossRefGoogle Scholar
  13. 13.
    Gui Z, Zhu H, Gillette E, Han X, Rubloff GW, Hu L, Lee SB (2013) Natural cellulose fiber as substrate for supercapacitor. ACS Nano 7(7):6037–6046CrossRefGoogle Scholar
  14. 14.
    Yu J, Xie F, Wu Z, Huang T, Wu J, Yan D, Huang C, Li L (2018) Flexible metallic fabric supercapacitor based on graphene/polyaniline composites. Electrochim Acta 259:968–974CrossRefGoogle Scholar
  15. 15.
    Li S, Huang D, Zhang B, Xu X, Wang M, Yang G, Shen Y (2014) Flexible supercapacitors based on bacterial cellulose paper electrodes. Adv Energy Mater 4:867–872Google Scholar
  16. 16.
    Schnepp Z (2013) Biopolymers as a flexible resource for nanochemistry. Angew Chem Int Ed 52(4):1096–1108CrossRefGoogle Scholar
  17. 17.
    Chen L-F, Huang Z-H, Liang H-W, Yao W-T, Yu Z-Y, Yu S-H (2013) Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose. Energy Environ Sci 6(11):3331–3338CrossRefGoogle Scholar
  18. 18.
    Liu R, Ma L, Huang S, Mei J, Xu J, Yuan G (2016) Large areal mass, flexible and freestanding polyaniline/bacterial cellulose/graphene film for high-performance supercapacitors. RSC Adv 6(109):107426–107432CrossRefGoogle Scholar
  19. 19.
    Liu R, Ma L, Huang S, Mei J, Xu J, Yuan G (2017) A flexible polyaniline/graphene/bacterial cellulose supercapacitor electrode. New J Chem 41(2):857–864CrossRefGoogle Scholar
  20. 20.
    Wang Z, Tammela P, Strømme M, Nyholm L (2015) Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance. Nanoscale 7(8):3418–3423CrossRefGoogle Scholar
  21. 21.
    Liu L, Niu Z, Zhang L, Zhou W, Chen X, Xie S (2014) Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. Adv Mater 26(28):4855–4862CrossRefGoogle Scholar
  22. 22.
    Ma L, Liu R, Liu L, Wang F, Niu H, Huang Y (2016) Facile synthesis of Ni(OH)2/graphene/bacterial cellulose paper for large areal mass, mechanically tough and flexible supercapacitor electrodes. J Power Sources 335:76–83CrossRefGoogle Scholar
  23. 23.
    Liu D, Wang H, Du P, Wei W, Wang Q, Liu P (2018) Flexible and robust reduced graphene oxide/carbon nanoparticles/polyaniline (RGO/CNs/PANI) composite films: excellent candidates as free-standing electrodes for high-performance supercapacitors. Electrochim Acta 259:161–169CrossRefGoogle Scholar
  24. 24.
    Hu R, Zhao J, Zhu G, Zheng J (2018) Fabrication of flexible free-standing reduced graphene oxide/polyaniline nanocomposite film for all-solid-state flexible supercapacitor. Electrochim Acta 261:151–159CrossRefGoogle Scholar
  25. 25.
    Xu Q, Fan L, Yuan Y, Wei C, Bai Z, Xu J (2016) All-solid-state yarn supercapacitors based on hierarchically structured bacterial cellulose nanofiber-coated cotton yarns. Cellulose 23(6):3987–3997CrossRefGoogle Scholar
  26. 26.
    Lyu S, Chang H, Fu F, Hu L, Huang J, Wang S (2016) Cellulose-coupled graphene/polypyrrole composite electrodes containing conducting networks built by carbon fibers as wearable supercapacitors with excellent foldability and tailorability. J Power Sources 327:438–446CrossRefGoogle Scholar
  27. 27.
    Xie Y, Liu Y, Zhao Y, Tsang YH, Lau SP, Huang H, Chai Y (2014) Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode. J Mater Chem A 2(24):9142–9149CrossRefGoogle Scholar
  28. 28.
    Su H, Zhu P, Zhang L, Zeng W, Zhou F, Li T, Wang Q, Sun R, Wong C (2016) Low cost, high performance flexible asymmetric supercapacitor based on modified filter paper and an ultra-fast packaging technique. RSC Adv 6(87):83564–83572CrossRefGoogle Scholar
  29. 29.
    Chien H-H, Liao C-Y, Hao Y-C, Hsu C-C, Cheng I-C, Yu S, Chen J-Z (2018) Improved performance of polyaniline/reduced-graphene-oxide supercapacitor using atmospheric-pressure-plasma-jet surface treatment of carbon cloth. Electrochim Acta 260:391–399CrossRefGoogle Scholar
  30. 30.
    Zheng X, Yu H, Xing R, Ge X, Sun H, Li R, Zhang Q (2018) Multi-growth site graphene/polyaniline composites with highly enhanced specific capacitance and rate capability for supercapacitor application. Electrochim Acta 260:504–513CrossRefGoogle Scholar
  31. 31.
    Song N, Jia J, Wang W, Gao Y, Zhao Y, Chen Y (2016) Green production of pristine graphene using fluid dynamic force in supercritical CO2. Chem Eng J 298:198–205CrossRefGoogle Scholar
  32. 32.
    Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr (2006) Microbial cellulose—the natural power to heal wounds. Biomaterials 27(2):145–151CrossRefGoogle Scholar
  33. 33.
    Otero T, Boyano I (2003) Potentiostatic oxidation of polyaniline under conformational relaxation control: experimental and theoretical study. J Phys Chem B 107(18):4269–4276CrossRefGoogle Scholar
  34. 34.
    Feng J-X, Ye S-H, Lu X-F, Tong Y-X, Li G-R (2015) Asymmetric paper supercapacitor based on amorphous porous Mn3O4 negative electrode and Ni(OH)2 positive electrode: a novel and high-performance flexible electrochemical energy storage device. ACS Appl Mater Interfaces 7(21):11444–11451CrossRefGoogle Scholar
  35. 35.
    Wan C, Jiao Y, Li J (2017) Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. J Mater Chem A 5(8):3819–3831CrossRefGoogle Scholar
  36. 36.
    Yuan L, Yao B, Hu B, Huo K, Chen W, Zhou J (2013) Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ Sci 6(2):470–476CrossRefGoogle Scholar
  37. 37.
    Xiao X, Li T, Yang P, Gao Y, Jin H, Ni W, Zhan W, Zhang X, Cao Y, Zhong J (2012) Fiber-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 6(10):9200–9206CrossRefGoogle Scholar
  38. 38.
    Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F (2010) Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon 48(13):3825–3833CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations