Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 1, pp 33–52 | Cite as

Influence of heat treatment temperature of carbon fiber felt substrate on polyaniline electrosynthesis and its properties

  • Anne Karoline dos Santos Poli
  • Rodrigo Barbosa Hilário
  • Adriana Medeiros Gama
  • Mauricio Ribeiro Baldan
  • Emerson Sarmento GonçalvesEmail author
Original Paper
  • 89 Downloads

Abstract

Polyaniline was electrosynthesized using three voltammetric cycles on carbon fiber felts annealed at 1400, 1600, 2000, and 2300 K. Felts and composites was characterized by scanning electron microscopy, X-ray diffraction, Raman and Fourier transform infrared spectroscopy, and electrochemical impedance spectroscopy. Annealing temperatures increasing provides more crystalline felts. The increase of capacitance is due to presence of functional groups that attract a lot of charge to double layer. Capacitance found for felts treated in 1400 K is larger compared to felts treated in 2300 K. The functional groups presence on annealed felts at lower temperature implies polyaniline growth in several orientations and regions, evidenced by the high heteroatoms ratios which decrease with increasing annealing temperature. Therefore, for higher temperatures, the polyaniline growth occurs at several additional orientations. The polyaniline oxidation degree was close to emeraldine allowing mobile charge presence. Electrochemical impedance spectroscopy confirmed that as temperature decreases, resistance of inner and outer double layer decreases. To 1600 K annealing, polyaniline showed an increase in inner double layer capacitance which can be confirmed by lower ratio between bipolarons and polarons. The tendency to increase energy and power density is most prominent for polyaniline at 2300 K felt.

Keywords

Carbon fiber felt Heat treatment Polyaniline Electrosynthesis Structure EIS 

Notes

Acknowledgements

The authors would like to thank for technician support or AMR/IAE, AQI/IAE, and LAS/INPE.

Funding information

The authors are grateful for the financial support of FAPESP (project 2016/11462-3). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) - Finance Code 001.

References

  1. 1.
    Ran F, Tan Y, Dong W, Liu Z, Kong L, Kang L (2018) In situ polymerization and reduction to fabricate gold nanoparticle incorporated polyaniline as supercapacitor electrode materials. Polym Adv Technol 29(6):1697–1705CrossRefGoogle Scholar
  2. 2.
    Sato K, Noguchi M, Oki N, Oyama S (1999) Active carbon used for electrode for organic solvent type electric double layer capacitor. United States PatentGoogle Scholar
  3. 3.
    Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors. Chem Rev 104(10):4245–4269CrossRefGoogle Scholar
  4. 4.
    Mondal S, Rana U, Malik S (2015) Graphene quantum dot-doped polyaniline nanofiber as high performance supercapacitor electrode materials. Chem Commun 51(62):12365–12368CrossRefGoogle Scholar
  5. 5.
    Mitchell E, Candlera J, Souza F, Gupta RK, Gupba BK, Dongc LF (2015) High performance supercapacitor based on multilayer of polyaniline and graphene oxide. Synth Met 199:214–218CrossRefGoogle Scholar
  6. 6.
    Almeida DAL, Carvalho AAR Jr, Fonseca CP, Baldan MR, Ferreira NG (2013) Electrochemical performance of supercapacitors formed by PAni/CF and PAni/CNT/CF. ECS Trans 58:35–41CrossRefGoogle Scholar
  7. 7.
    Souza LL (2011) Uso da Voltametria Cíclica e da Espectroscopia de Impedância Eletroquímica na Determinacão da Área superficial ativa de Eletrodos Modificados a Base de Carbono (Thesis).Instituto de Pesquisas Energeticas e Nucleares Associada à Universidade de Sao Paulo, Sao PauloGoogle Scholar
  8. 8.
    Nooshabadiand MS, Zahedi F (2017) Electrochemical reduced graphene oxide-polyaniline as effective nanocomposite film for high-performance supercapacitor applications. Electrochim Acta 245:575–586CrossRefGoogle Scholar
  9. 9.
    Male U, Modigunta JKR, Huh DS (2016) Design and synthesis of polyaniline-grafted reduced graphene oxide via azobenzene pendants for high-performance supercapacitors. Polymer 110:242–249CrossRefGoogle Scholar
  10. 10.
    Huang H, Gan M, Ma L, Yu L, Hu H, Yang F, Li Y, Ge C (2015) Fabrication of polyaniline/graphene/titania nanotube arrays nanocomposite and their application in supercapacitors. J Alloys Compound 630:214–221CrossRefGoogle Scholar
  11. 11.
    Poli AKSP, Caetano GMD, Vargas LR, Gama AM, Baldan MR, Gonçalves ES (2017) Electrosynthesis of polyaniline on carbon fiber felt: influence of voltammetric cycles on electroactivity. J Electrochem Soc 164:631–639CrossRefGoogle Scholar
  12. 12.
    Focke WW, Wnek GE (1988) Conduction mechanisms in polyaniline (emeraldine salt). J Electroanal Chem 256(2):343–352CrossRefGoogle Scholar
  13. 13.
    Kanemoto H, Kawamura T, Suzuki H, Miyazaki T, Mozumi H, Kaneko Y (2017) Electroless copper plating process by applying alternating one-side air stirring method for high-aspect-ratio through-holes. J Electrochem Soc 164:771–777CrossRefGoogle Scholar
  14. 14.
    Prasanna C (1999) Conducting polymers, fundamentals and applications: a practical approach. Springer Science & Business MediaGoogle Scholar
  15. 15.
    Nohara LB, Filho GP, Nohara EL, Kleinke MU, Rezende MC (2005) Evaluation of carbon fiber surface treated by chemical and cold plasma processes. Mater Res 8(3):281–286CrossRefGoogle Scholar
  16. 16.
    Pittman CU, He GR, Wu B, Gardner SD (1997) Chemical modification of carbon fiber surfaces by nitric acid oxidation followed by reaction with tetraethylenepentamine. Carbon 35(3):317–331CrossRefGoogle Scholar
  17. 17.
    Gonçalves ES, Dalmolin C, Biaggio SR, Nascente PAP, Rezende MC, Ferreira NG (2007) Influence of heat treatment temperature on the morphological and structural aspects of reticulated vitreous carbon used in polyanilineelectrosynthesis. Appl Surf Sci 253:8340–8344CrossRefGoogle Scholar
  18. 18.
    Kim JD, Roh JS, Kim MS (2017) Effect of carbonization temperature on crystalline structure and properties of isotropic pitch-based carbon fiber. Carbon Lett 21:51–60CrossRefGoogle Scholar
  19. 19.
    Gonçalves ES, Rezende MC, Baldan MR, Ferreira NG (2009) Efeito do tratamentotérmiconamicroestrutura, turbostraticidade e superfície de carbon vítreo reticulado analisado por XPS, espalhamento Raman e voltametria cíclica. Quím Nova 32(1):158–164CrossRefGoogle Scholar
  20. 20.
    Gonçalves ES, Rezende MC, Ferreira NG (2006) Dynamics of defects and surface structure formation in reticulated vitreous carbon. Braz J Phys 36(2a):264–266CrossRefGoogle Scholar
  21. 21.
    Lee S, Kim KH, Lee Y (2017) Preparation of carbon discs using petroleum-based binder pitch reformed with carbon black. Carbon Lett 23:84–87Google Scholar
  22. 22.
    He M, Zheng Y, Du Q (2013) Electrochemical fabrication of polyaniline/MnO2 graphite felt as free standing, flexible electrode for supercapacitors. Polym Compos 34(6):819–824CrossRefGoogle Scholar
  23. 23.
    Wangxi Z, Jie L, Gang W (2003) Evolution of structure and properties of PAN precursors during their conversion to carbon fibers. Carbon 41(14):2805–2812CrossRefGoogle Scholar
  24. 24.
    Fu Z, Liu B, Sun L, Zhang H (2017) Study on the thermal oxidative stabilization reactions and the formed structures in polyacrylonitrile during thermal treatment. Polym Degrad Stab 140:104–113CrossRefGoogle Scholar
  25. 25.
    Smith AL (1979) Applied infrared spectroscopy: fundamentals, techniques and analytical problem-solving. WileyGoogle Scholar
  26. 26.
    Stuart B (2005) Infrared spectroscopy: fundamentals and applications. Vol 1, Analytical Techniques in the SciencesGoogle Scholar
  27. 27.
    Casiraghi C, Hartschuh A, Qian H, Piscanec S, Georgi C, Fasoli A, Novoselov KS, Basko DM, Ferrari AC (2009) Raman spectroscopy of graphene edges. Nano Lett 9(4):1433–1441CrossRefGoogle Scholar
  28. 28.
    Cuesta A, Dhamelincourt P, Laureyns J, Martínez-Alonsoand A, Tascon JMD (1994) Raman microprobe studies on carbon materials. Carbon 32(8):1523–1532CrossRefGoogle Scholar
  29. 29.
    Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43(8):1731–1742CrossRefGoogle Scholar
  30. 30.
    Jawhari T, Roid A, Casado J (1995) Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33(11):1561–1565CrossRefGoogle Scholar
  31. 31.
    Junior MAA, Matsushima JT, Rezende MC, Gonçalves ES, Marcuzzo JS, Baldan MR (2017) Production and characterization of activated carbon fiber from textile PAN fiber. J Aerosp Technol Manag 9(4):423–430CrossRefGoogle Scholar
  32. 32.
    Almeida DAL (2013) Estudo de Compósito de Nanotubos de Carbono, Fibras de Carbono e Polianilina como Eletrodos em Dispositivos de Conversão e Armazenamento de Energia. (Thesis) Instituto Nacional de Pesquisas Espaciais, São José dos CamposGoogle Scholar
  33. 33.
    Almeida EC, Trava-Airoldi V, Ferreira NG, Rosolen JM (2005) Electrochemical insertion of lithium into a doped diamond film grown on carbon felt substrate. Diam Relat Mat 14(10):1673–1677CrossRefGoogle Scholar
  34. 34.
    Cançado LG, Takai K, Enoki T, Endo M, Kim Y, Mizusaki H, Jorio A, Coelho L, Paniago R, Pimenta M (2006) General equation for the determination of the crystallite size L a of nanographite by Raman spectroscopy. Appl Phys Lett 88(16):163106CrossRefGoogle Scholar
  35. 35.
    Boukamp BA (1986) A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems. Solid State Ionics 20(1):31–44CrossRefGoogle Scholar
  36. 36.
    Boukamp BA (1986) A package for impedance/admittance data analysis. Solid State Ionics 18-19:136–140CrossRefGoogle Scholar
  37. 37.
    Boukamp BA (2004) Electrochemical impedance spectroscopy in solid state ionics: recent advances. Solid State Ionics 169(1-4):65–73CrossRefGoogle Scholar
  38. 38.
    Bisquert J, Garcia-Belmonte G, Fabregat-Santiago F, Ferriols NS, Yamashita M, Pereira EC (2000) Application of a distributed impedance model in the analysis of conducting polymer films. Electrochem Commun 2(8):601–605CrossRefGoogle Scholar
  39. 39.
    Garcia-Belmonte G, Bisquert J, Pereira EC, Fabregat-Santiago F (2001) Switching behaviour in lightly doped polymeric porous film electrodes. Improving distributed impedance models for mixed conduction conditions. J Electroanal Chem 508(1-2):48–58CrossRefGoogle Scholar
  40. 40.
    Rodrigues AC (2018) Estudo e caracterização de fibras de carbon ativadas com adsorção de prata e ferroparaaplicaçãoemsupercapacitor (Thesis), Instituto Tecnológico de Aeronáutica, São José dos CamposGoogle Scholar
  41. 41.
    Hopkins AR, Lipeles RA, Hwang SJ (2008) Morphology characterization of polyaniline nano- and microstructures. Synth Met 158(14):594–601CrossRefGoogle Scholar
  42. 42.
    Oliveira LR, Manzato L, Mascarenhas YP, Sanches EA (2017) The influence of heat-treatment on the semi-crystalline structure of polyaniline emeraldine-salt form. J Mol Struct 1128:707–717CrossRefGoogle Scholar
  43. 43.
    Mazzeu MAC, Faria LK, Cardoso AM, Gama AM, Baldan MR, Gonçalves ES (2017) Structural and morphological characteristics of polyaniline synthesized in pilot scale. J Aerosp Technol Manag 9(1):39–47CrossRefGoogle Scholar
  44. 44.
    Jenkins GM, Kawamura K (1976) Polymeric carbons: carbon fiber, glass and char. Cambridge University Press, CambridgeGoogle Scholar
  45. 45.
    Mattos EC, Vigano I, Dutra RCL, Diniz MF (2002) Aplicação de metodologias FT-IR de transmissao e fotoacústica a caracterização de materiais altamente energéticos: parte II. Quim Nova 25(5):722–728CrossRefGoogle Scholar
  46. 46.
    Zeng XR, KoTM (1998) Structures and properties of chemically reduced polyanilines. Polymer 39(5):1187–1195CrossRefGoogle Scholar
  47. 47.
    Dmitrieva E, Dunsch L (2011) How linear is “linear” polyaniline? J Phys Chem B 115(20):6401–6411CrossRefGoogle Scholar
  48. 48.
    Shabani-Nooshabadi M, Zahedi F (2017) Electrochemical reduced grapheme oxide-polyaniline as effective nanocomposite film for high-performance supercapacitor applications. Electrochim Acta 246:575–586CrossRefGoogle Scholar
  49. 49.
    Tang J, Jing X, Wang B, Wang F (1988) Infrared spectra of soluble polyaniline. Synth Met 24(3):231–238CrossRefGoogle Scholar
  50. 50.
    Wang H, Yang X, Hao Q, Lu L, Wang X (2009) Graphene oxide doped polyaniline for supercapacitors. Electrochem Commun 11(6):1158–1161CrossRefGoogle Scholar
  51. 51.
    Colomban P, Gruger A, Novak A, Regis A (1994) Infrared and Raman study of polyaniline: part I. hydrogen bonding and electronic mobility in emeraldine salts. J Mol Struct 317(3):261–271CrossRefGoogle Scholar
  52. 52.
    Cochet M, Louarn G, Quillard S, Boyer MI, Buisson JP, Lefrant S (2000) Theoretical and experimental vibrational study of polyaniline in base forms: non-planar analysis. Part I. J Raman Spectrosc 31(11):1029–1039CrossRefGoogle Scholar
  53. 53.
    Du F, Wang J, Tang C, Tsui C, Xie X, Yung K (2013) Enhanced electrochemical capacitance of polyaniline/graphene hybrid nanosheet with graphene as templates. Compos Part B 53:376–381CrossRefGoogle Scholar
  54. 54.
    Morávková Z, Dmitrieva E (2017) Structural change in polyaniline near the middle oxidation peak studied by in situ Raman spectroelectrochemistry. J Raman Spectrosc 48(9):1229–1234CrossRefGoogle Scholar
  55. 55.
    Bernards MC, Goff AH (2006) Quantitative characterization of polyaniline films using Raman spectroscopy. I: polaron lattice and bipolaron. Electrochim Acta 52(2):595–603CrossRefGoogle Scholar
  56. 56.
    Bredas JL, Street GB (1985) Polarons, bipolarons, and solitons in conducting polymers. Acc Chem Res 18(10):309–315CrossRefGoogle Scholar
  57. 57.
    Anderson PW (1975) Model for the electronic structure of amorphous semiconductors. Phys Rev Lett 34(15):953–955CrossRefGoogle Scholar
  58. 58.
    Macdonald JR, Schoonman J, Lehnen AP (1982) Applicability and power of complex nonlinear least squares for the analysis of impedance and admittance data. J Electroanal Chem 131:77–95CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto Tecnológico da AeronáuticaSão José dos CamposBrazil
  2. 2.Laboratório de Caracterização Físico-Química, Divisão de MateriaisInstituto da Aeronáutica e EspaçoSão José dos CamposBrazil
  3. 3.Laboratório Associado de SensoresInstituto Nacional de Pesquisas EspaciaisSão José dos CamposBrazil

Personalised recommendations