Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 1, pp 19–25 | Cite as

Broadly absorbing bluish black-to-transmissive sky blue electrochromic polymer based on 3,4-dioxythiophene

  • Xiaoming ChenEmail author
  • Mingdi Yang
  • Wenzong Xu
  • Qishu Qu
  • Qingchun Zhao
  • Wensheng Zou
Original Paper
  • 77 Downloads

Abstract

A novel conjugated polymer PProDOT(MeEO)2 based on dioxythiophene with symmetric double ethoxymethyl pendant groups was successfully synthesized through electrochemical polymerization. The polymer film exhibits reversible electrochromism switching between broadly absorbing bluish black neutral state (− 0.1 V) and transmissive sky blue oxidized state (0.7 V). The symmetric double short-chain ethoxymethyl substitution pattern was utilized to realize the broadly absorbing bluish black neutral state of the polymer film. The electrochemical, spectroelectrochemical, and electrochromic switching properties of the polymer film were studied in detail.

Keywords

Bluish black Transmissive Electrochromic polymer Dioxythiophene 

Notes

Funding information

This work received financial support from the Support Plan Project of Excellent Young Talents in Universities in Anhui Province (gxyq2017023); Anhui Natural Science Foundation (1808085 MB29); Anhui Province College Natural Science Foundation (KJ2017A482); the Open Foundation of Anhui Province Key Laboratory of Advanced Building Materials of Anhui Jianzhu University (JZCL201602ZZ); College Students Innovation and Entrepreneurship Training Plan Project (201810878000); and College Quality Engineering Project of Anhui Province: Polymer Chemistry—Resources Sharing Course (2016gxk028).

References

  1. 1.
    Beaujuge PM, Reynolds JR (2010) Chem Rev 110(1):268–320CrossRefGoogle Scholar
  2. 2.
    Gunbas G, Toppare L (2012) Chem Commun 48(8):1083–1101CrossRefGoogle Scholar
  3. 3.
    Neo WT, Ye Q, Chua S, Xu J (2016) J Mater Chem C 4(31):7364–7376CrossRefGoogle Scholar
  4. 4.
    Lv X, Li W, Ouyang M, Zhang Y, Wright DS, Zhang C (2017) J Mater Chem C 5(1):12–28CrossRefGoogle Scholar
  5. 5.
    Beverina L, Pagani GA, Sassi M (2014) Chem Commun 50(41):5413–5430CrossRefGoogle Scholar
  6. 6.
    Amb CM, Dyer AL, Reynolds JR (2011) Chem Mater 23(3):397–415CrossRefGoogle Scholar
  7. 7.
    Dyer AL, Thompson EJ, Reynolds JR (2011) ACS Appl Mater Interfaces 3(6):1787–1795CrossRefGoogle Scholar
  8. 8.
    Beaujuge PM, Ellinger S, Reynolds JR (2008) Nat Mater 7(10):795–799CrossRefGoogle Scholar
  9. 9.
    Shi P, Amb CM, Knott EP, Thompson EJ, Liu DY, Mei J, Dyer AL, Reynolds JR (2010) Adv Mater 22(44):4949–4953CrossRefGoogle Scholar
  10. 10.
    Krishnakumar B, Balakrishna A, Nawabjan SA, Pandiyan V, Aguiar A, Sobral AJFN (2017) J Phys Chem Solids 111:364–371CrossRefGoogle Scholar
  11. 11.
    Ferkous H, Merouani S, Hamdaoui O, Petrier C (2017) Ultrason Sonochem 34:580–587CrossRefGoogle Scholar
  12. 12.
    Tarkuc S, Sahmetlioglu E, Tanyeli C, Akhmedov IM, Toppare L (2006) Electrochim Acta 51(25):5412–5419CrossRefGoogle Scholar
  13. 13.
    Welsh DM, Kumar A, Meijer EW, Reynolds JR (1999) Adv Mater 11(16):1379–1382CrossRefGoogle Scholar
  14. 14.
    Gaupp CL, Welsh DM, Reynolds JR (2002) Macromol Rapid Commun 23(15):885–889CrossRefGoogle Scholar
  15. 15.
    Reeves BD, Grenier CRG, Argun AA, Cirpan A, McCarley TD, Reynolds JR (2004) Macromolecules 37(20):7559–7569CrossRefGoogle Scholar
  16. 16.
    Dyer AL, Craig MR, Babiarz JE, Kiyak K, Reynolds JR (2010) Macromolecules 43(10):4460–4467CrossRefGoogle Scholar
  17. 17.
    Silva AJC, Nogueira VC, Santos TEA, Buck CJT, Worrall DR, Tonholo J, Mortimer RJ, Ribeiro AS (2015) Sol Energ Mater Sol Cells 134:122–132CrossRefGoogle Scholar
  18. 18.
    Santa-Cruz PA, Teles FS (2003) Spectra Lux Software v2.0, Ponto Quântico Nanodispositivos, Recife-PE, Brazil, RENAMIGoogle Scholar
  19. 19.
    Mortimer RJ, Varley TS (2011) Displays 32(1):35–44CrossRefGoogle Scholar
  20. 20.
    Soganci T, Gumusay O, Soyleyici HC, Ak M (2018) Polymer 134:187–195CrossRefGoogle Scholar
  21. 21.
    Carbas BB, Kivrak A, Onal AM (2011) Electrochim Acta 58:223–230CrossRefGoogle Scholar
  22. 22.
    Zhang S, Xu J, Lu B, Qin L, Zhang L, Zhen S, Mo D (2014) J Polym Sci Polym Chem 52(14):1989–1999CrossRefGoogle Scholar
  23. 23.
    Hu B, Zhang X, Liu J, Chen X, Zhao J, Jin L (2017) Synth Met 228:70–78CrossRefGoogle Scholar
  24. 24.
    Groenendaal LB, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Adv Mater 12(7):481–494CrossRefGoogle Scholar
  25. 25.
    Zhai Y, Zhu Z, Zhou S, Zhu C, Dong S (2018) Recent advances in spectroelectrochemistry. Nanoscale 10(7):3089–3111CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Anhui Key Laboratory of Advanced Building Materials, School of Materials & Chemical EngineeringAnhui Jianzhu UniversityHefeiPeople’s Republic of China

Personalised recommendations