Journal of Solid State Electrochemistry

, Volume 23, Issue 1, pp 237–244 | Cite as

Core-shells on nanosheets: Fe3O4@carbon-reduced graphene oxide composites for lithium-ion storage

  • Yufei Wang
  • Xingsheng Li
  • Mengmeng He
  • Hang Du
  • Xianli Wu
  • Jinghao HaoEmail author
  • Baojun LiEmail author
Original Paper


Fabrication of core-shells on sheets is considered as an effective strategy to explore novel functional composite materials. Herein, a three-component composite was successfully constructed by dispersing and anchoring carbon-coated Fe3O4 nanoparticle core-shell structures onto reduced graphene oxide (rGO) sheets. Carbonization of glucose polymer formed carbon shells existing between the Fe3O4 particles and rGO sheets. The structure of core-shells placed on rGO sheets formed close connections and high structural stability to the Fe3O4@C-rGO (FCG) composite. Reversible specific capacity up to 884 mA h g−1 at 0.2 C with good recyclability was achieved with FCG as an anode material of lithium-ion batteries. These unique three-dimensional structures of core-shells on sheets are beneficial to enhancing lithium-ion battery storage capacity, cycle stability, and rate performances.

Graphical abstract

Fabrication of novel functional materials is an effective strategy to construct core-shells on sheets. Fe3O4@C-rGO (FCG) composites have been successfully prepared by fabricating carbon shell-coated Fe3O4 nanoparticles (NPs) and reduced graphene oxide (rGO) sheets together. Carbonization of glucose formed carbon shells between Fe3O4 NPs and rGO sheets. The synergism between core-shell structures and sheets contributed to the close connection and high structure stability in FCG. As anode material of lithium-ion batteries (LIBs), the reversible specific capacity of FCG still maintained 748 mA h g−1 after 300 cycles at 0.2 C with good recyclability. This three-dimensional core-shell on sheets structure is beneficial to enhancing lithium storage capacity, cycle stability and rate performance.


Fe3O4 nanoparticles Carbonization Core-shell structure Three-component composite Lithium-ion storage 



We thank LetPub for its linguistic assistance during the preparation of this manuscript.

Author contributions

Y.W., X.L., J.H., and B.L. conceived and designed the experiments; Y.W., X.W., M.H., and H.D. performed the experiments; X.W. and B.L. analyzed the data; Y.W., X.W., and B.L. wrote and revised the paper.


Financial supports from the National Natural Science Foundation of China (no. 21401168) and the Henan Science and Technology Open Cooperation Project (no. 172106000067) are acknowledged.

Compliance with ethical standards



Supplementary material

10008_2018_4105_MOESM1_ESM.doc (194 kb)
ESM 1 (DOC 193 kb)


  1. 1.
    Zhang XH, Qiu XY, Kong DB, Zhou L, Li ZH, Li XL, Zhi LJ (2017) Silicene flowers: a dual stabilized silicon building block for high-performance lithium battery anodes. ACS Nano 11(7):7476–7484CrossRefGoogle Scholar
  2. 2.
    Liu DD, Kong Z, Liu XH, Fu A, Wang Y, Guo YG, Guo P, Li H, Zhao XS (2018) Spray-drying induced assembly of skeleton-structured SnO2/graphene composite spheres as superior anode materials for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 10(3):2515–2525CrossRefGoogle Scholar
  3. 3.
    Liu H, Wang GX, Wang JZ, Wexler D (2008) Magnetite/carbon core-shell nanorods as anode materials for lithium-ion batteries. Electrochem Commun 10(12):1879–1882CrossRefGoogle Scholar
  4. 4.
    Park S, An JH, Piner RD, Jung I, Yang D, Velamakanni A, Nguyen SBT, Ruoff RS (2008) A queous suspension and characterization of chemically modified graphene sheets. Chem Mater 20(21):6592–6594CrossRefGoogle Scholar
  5. 5.
    Chou SL, Wang JZ, Choucair M, Liu HK, Stride JA, Dou SX (2010) Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem Commun 12(2):303–306CrossRefGoogle Scholar
  6. 6.
    Yang SB, Cui GL, Pang SP, Cao Q, Kolb U, Feng X, Maier J, Müllen K (2010) Fabrication of cobalt and cobalt oxide/graphene composites: towards high-performance anode materials for Lithium ion batteries. ChemSusChem 3(2):236–239CrossRefGoogle Scholar
  7. 7.
    Zhao JP, Yang BJ, Zheng ZM, Yang J, Yang Z, Zhang P, Ren W, Yan X (2014) Facile preparation of one-dimensional wrapping structure: graphene nanoscroll-wrapped of Fe3O4 nanoparticles and its application for lithium-ion battery. ACS Appl Mater Interfaces 6(12):9890–9896CrossRefGoogle Scholar
  8. 8.
    Chen XC, Wei W, Lv W, Su FY, He YB, Li B, Kang F, Yang QH (2012) A graphene-based nanostructure with expanded ion transport channels for high rate Li-ion batteries. Chem Commun 48(47):5904–5906CrossRefGoogle Scholar
  9. 9.
    Luo B, Wang B, Liang MH, Ning J, Li XL, Zhi LJ (2012) Reduced graphene oxide-mediated growth of uniform tin-core/carbon-sheath coaxial nanocables with enhanced lithium ion storage properties. Adv Mater 24(11):1405–1409CrossRefGoogle Scholar
  10. 10.
    Novoselov KS, Geim AK, Morozov SV et al (2010) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  11. 11.
    Rao CN, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed 48(42):7752–7777CrossRefGoogle Scholar
  12. 12.
    Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145CrossRefGoogle Scholar
  13. 13.
    Robinson JT, Tabakman SM, Liang YY, Wang HL, Casalongue HS, Vinh D, Dai HJ (2011) Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc 133(17):6825–6831CrossRefGoogle Scholar
  14. 14.
    Guo CX, Yang HB, Sheng ZM, Lu ZS, Song QL, Li CM (2010) Layered graphene/quantum dots for photovoltaic devices. Angew Chem Int Ed 49(17):3014–3017CrossRefGoogle Scholar
  15. 15.
    Yao F, Gunes F, Ta HQ et al (2012) Diffusion mechanism of lithium ion through basal plane of layered graphene. J Am Chem Soc 134(20):8646–8654CrossRefGoogle Scholar
  16. 16.
    Gulbakan B, Yasun E, Shukoor MI, Zhu Z, You M, Tan X, Sanchez H, Powell DH, Dai H, Tan W (2010) A dual platform for selective analyte enrichment and ionization in mass spectrometry using aptamer-conjugated graphene oxide. J Am Chem Soc 132(49):17408–17410CrossRefGoogle Scholar
  17. 17.
    Wang HL, Yang Y, Liang YY, Robinson JT, Li Y, Jackson A, Cui Y, Dai H (2011) Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11(7):2644–2647CrossRefGoogle Scholar
  18. 18.
    Wang HL, Yang Y, Liang YY, Cui LF, Sanchez Casalongue H, Li Y, Hong G, Cui Y, Dai H (2011) LiMn1−xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew Chem Int Ed 50(32):7364–7368CrossRefGoogle Scholar
  19. 19.
    Wang HL, Liang YY, Li YG, Dai HJ (2011) Co1−xS–graphene hybrid: a high-performance metal chalcogenide electrocatalyst for oxygen reduction. Angew Chem Int Ed 50(46):10969–10972CrossRefGoogle Scholar
  20. 20.
    Rocha VG, Garcia-Tunon E, Botas C et al (2017) Multimaterial 3D printing of graphene-based electrodes for electrochemical energy storage using thermoresponsive inks. ACS Appl Mater Interfaces 9(42):37136–37145CrossRefGoogle Scholar
  21. 21.
    Chen WF, Li SR, Chen CH, Yan LF (2011) Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv Mater 23(47):5679–5683CrossRefGoogle Scholar
  22. 22.
    Zheng PL, Dai ZF, Zhang Y, Dinh KN, Zheng Y, Fan H, Yang J, Dangol R, Li B, Zong Y, Yan Q, Liu X (2017) Scalable synthesis of SnS2/S-doped graphene composites for superior Li/Na-ion batteries. Nanoscale 9(39):14820–14825CrossRefGoogle Scholar
  23. 23.
    Zhang Q, Gao QM, Qian WW, Zhang H, Tan Y, Tian W, Li Z, Xiao H (2017) Graphene-based carbon coated tin oxide as a lithium ion battery anode material with high performance. J Mater Chem A 5(36):19136–19142CrossRefGoogle Scholar
  24. 24.
    Lee YW, An GH, Kim BS, Hong J, Pak S, Lee EH, Cho Y, Lee J, Giraud P, Cha SN, Ahn HJ, Sohn JI, Kim JM (2016) Synergistic effects of a multifunctional graphene based interlayer on electrochemical behavior and structural stability. ACS Appl Mater Interfaces 8(27):17651–17658CrossRefGoogle Scholar
  25. 25.
    Chen BA, Liu EZ, Cao TT, He F, Shi C, He C, Ma L, Li Q, Li J, Zhao N (2017) Controllable graphene incorporation and defect engineering in MoS2-TiO2 based composites: towards high-performance lithium-ion batteries anode materials. Nano Energy 33:247–256CrossRefGoogle Scholar
  26. 26.
    Liang CL, Zhai T, Wang W, Chen J, Zhao WX, Lu XH, Tong YX (2014) Fe3O4/reduced graphene oxide with enhanced electrochemical performance towards lithium storage. J Mater Chem A 2(20):7214–7220CrossRefGoogle Scholar
  27. 27.
    Ma CL, Shi J, Zhao Y, Song NJ, Wang YX (2017) A novel porous reduced microcrystalline graphene oxide supported Fe3O4@C nanoparticle composite as anode material with excellent lithium storage performances. Chem Eng J 326:507–517CrossRefGoogle Scholar
  28. 28.
    Zuo YT, Wang G, Peng J, Li G, Ma Y, Yu F, Dai B, Guo X, Wong CP (2016) Hybridization of graphene nanosheets and carbon-coated hollow Fe3O4 nanoparticles as a high-performance anode material for lithium-ion batteries. J Mater Chem A 4(7):2453–2460CrossRefGoogle Scholar
  29. 29.
    Lu XY, Wang RH, Bai Y, Chen JJ, Sun J (2015) Facile preparation of a three-dimensional Fe3O4/macroporous graphene composite for high-performance Li storage. J Mater Chem A 3(22):12031–12037CrossRefGoogle Scholar
  30. 30.
    Wang JZ, Zhong C, Wexler D, Idris NH, Wang ZX, Chen LQ, Liu HK (2011) Graphene-encapsulated Fe3O4 nanoparticles with 3D laminated structure as superior anode in lithium ion batteries. Chem Eur J 17(2):661–667CrossRefGoogle Scholar
  31. 31.
    Su J, Cao MH, Ren L, Hu CW (2011) Fe3O4 graphene nanocomposites with improved lithium storage and magnetism properties. J Phys Chem C 115(30):14469–14477CrossRefGoogle Scholar
  32. 32.
    Liang CL, Liu Y, Bao RY, Luo Y, Yang W, Xie BH, Yang MB (2016) Effects of Fe3O4 loading on the cycling performance of Fe3O4/rGO composite anode material for lithium ion batteries. J Alloys Compd 678:80–86CrossRefGoogle Scholar
  33. 33.
    Zhao QS, Liu JL, Wang YX, Tian W, Liu J, Zang J, Ning H, Yang C, Wu M (2018) Novel in-situ redox synthesis of Fe3O4/rGO composites with superior electrochemical performance for lithium-ion batteries. Electrochim Acta 262:233–240CrossRefGoogle Scholar
  34. 34.
    Lin JH, Liang HY, Jia HN, Chen S, Guo J, Qi J, Qu C, Cao J, Fei W, Feng J (2017) In situ encapsulated Fe3O4 nanosheet arrays with graphene layers as an anode for high-performance asymmetric supercapacitors. J Mater Chem A 5(47):24594–24601CrossRefGoogle Scholar
  35. 35.
    Zhou GM, Wang DW, Li F, Zhang L, Li N, Wu ZS, Wen L, Lu GQ(M), Cheng HM (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22(18):5306–5313CrossRefGoogle Scholar
  36. 36.
    Muraliganth T, Murugan AV, Manthiram A (2009) Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium ion batteries. Chem Commun 41:7360–7362CrossRefGoogle Scholar
  37. 37.
    Liu J, Zhou YC, Liu F, Liu CP, Wang JB, Pan Y, Xue DF (2012) One-pot synthesis of mesoporous interconnected carbon-encapsulated Fe3O4 nanospheres as superior anodes for li-ion batteries. RSC Adv 2(6):2262–2265CrossRefGoogle Scholar
  38. 38.
    Zhu T, Chen JS, Lou XW (2011) Glucose-assisted one-pot synthesis of FeOOH nanorods and their transformation to Fe3O4@carbon nanorods for application in lithium ion batteries. J Phys Chem C 115(19):9814–9820CrossRefGoogle Scholar
  39. 39.
    Jiang Y, Jiang ZJ, Yang LF, Cheng S, Liu ML (2015) A high-performance anode for lithium ion batteries: Fe3O4 microspheres encapsulated in hollow graphene shells. J Mater Chem A 3(22):11847–11856CrossRefGoogle Scholar
  40. 40.
    Lee JE, Yu SH, Lee DJ, Lee DC, Han SI, Sung YE, Hyeon T (2012) Facile and economical synthesis of hierarchical carbon-coated magnetite nanocomposite particles and their applications in lithium ion battery anodes. Energy Environ Sci 5(11):9528–9533CrossRefGoogle Scholar
  41. 41.
    Chin KC, Chong GL, Poh CK, Van LH, Sow CH, Lin J, Wee ATS (2007) Large-scale synthesis of Fe3O4 nanosheets at low temperature. J Phys Chem C 111(26):9136–9141CrossRefGoogle Scholar
  42. 42.
    Dong XC, Xu H, Wang XW, Huang YX, Chan-Park MB, Zhang H, Wang LH, Huang W, Chen P (2012) 3D graphene-cobalt oxide electrode for high-performance supercapacitor and Enzymeless glucose detection. ACS Nano 6(4):3206–3213CrossRefGoogle Scholar
  43. 43.
    Li N, Chen ZP, Ren WC, Li F, Cheng HM (2012) Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc Natl Acad Sci U S A 109(43):17360–17365CrossRefGoogle Scholar
  44. 44.
    Zhang ZH, Wang F, An Q, Li W, Wu PY (2015) Synthesis of graphene@Fe3O4@C core–shell nanosheets for high-performance lithium ion batteries. J Mater Chem A 3(13):7036–7043CrossRefGoogle Scholar
  45. 45.
    Ding X, Huang XB, Jin JL, Ming H, Wang LM, Ming J (2018) Sustainable solid-state strategy to hierarchical core-shell structured Fe3O4@graphene towards a safer and green sodium ion full battery. Electrochim Acta 260:882–889CrossRefGoogle Scholar
  46. 46.
    Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105CrossRefGoogle Scholar
  47. 47.
    Fujii T, de Groot FMF, Sawatzky GA, Voogt FC, Hibma T, Okada K (1999) In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys Rev B 59(4):3195–3202CrossRefGoogle Scholar
  48. 48.
    Piao YZ, Kim HS, Sung YE, Hyeon T (2010) Facile scalable synthesis of magnetite nanocrystals embedded in carbon matrix as superior anode materials for lithium-ion batteries. Chem Commun 46(1):118–120CrossRefGoogle Scholar
  49. 49.
    Wang YX, Wang YW, Liu JL, Pan L, Tian W, Wu MB, Qiu JS (2017) Preparation of carbon nanosheets from petroleum asphalt via recyclable molten-salt method for superior lithium and sodium storage. Carbon 122:344–351CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical Engineering and Food ScienceZhengzhou Institute of TechnologyZhengzhouPeople’s Republic of China
  2. 2.College of Chemistry and Molecular EngineeringZhengzhou UniversityZhengzhouPeople’s Republic of China
  3. 3.Faculty of ScienceHenan University of Animal Husbandry and EconomyZhengzhouPeople’s Republic of China

Personalised recommendations