Advertisement

Parameters influencing the capacitive behavior of carbon composite electrodes: composition, morphology, electrical conductivity, and surface chemistry

  • Mazdak Hashempour
  • Antonello Vicenzo
  • Maksim Bahdanchyk
  • Massimiliano Bestetti
Original Paper
  • 28 Downloads

Abstract

The interplay and overlapping of several factors determine the capacitive behavior of carbon composite electrodes for capacitive energy storage application. General guidelines and, hopefully, design principles would be useful for inspiring further development work in this area, beyond a purely empirical approach. The present work attempts to give a contribution in this direction, through a systematic study of the effect of the composition on the behavior of electrodes prepared via a paste-casting method in three composite classes: AC–CNT, AC–RGO, and AC–CNT–RGO. Fundamental properties of individual materials, such as pore structure, specific surface area, and surface chemistry, or of the electrode pastes, such as the electrical conductivity, were characterized by suitable techniques and linked to the observed electrochemical behavior, which was systematically evaluated as a function of the composition. Basic properties, such as conductivity and surface area, have an overwhelming and interlaced influence and should be taken as prerequisites of the pristine materials. Morphology and dimensionality of individual components determine composition thresholds above which the full exploitation or the synergistic enhancement of the properties of individual components may be effectively achieved. Expectedly, since addressing different performance requirements does not necessarily results in a single composite composition, the appropriate content of any constituent should be adjusted based on the target performance demands.

Keywords

Supercapacitor Carbon composites Activated carbon Carbon nanotube Reduced graphene oxide 

Supplementary material

10008_2018_4095_MOESM1_ESM.pdf (5.6 mb)
ESM 1 (PDF 5.64 mb)

References

  1. 1.
    Vinayan BP, Nagar R, Raman V, Rajalakshmi N, Dhathathreyan KS, Ramaprabhu S (2012) Synthesis of graphene-multiwalled carbon nanotubes hybrid nanostructure by strengthened electrostatic interaction and its lithium ion battery application. J Mater Chem 22(19):9949CrossRefGoogle Scholar
  2. 2.
    Xin X, Ito K, Kubo Y (2016) Graphene/activated carbon composite material for oxygen electrodes in lithium–oxygen rechargeable batteries. Carbon 99:167–173CrossRefGoogle Scholar
  3. 3.
    Jafri RI, Arockiados T, Rajalakshmi N, Ramaprabhu S (2010) Nanostructured Pt dispersed on graphene-multiwalled carbon nanotube hybrid nanomaterials as electrocatalyst for PEMFC. J Electrochem Soc 157(6):B874–B879CrossRefGoogle Scholar
  4. 4.
    Yang Y, Liu T, Liao Q, Ye D, Zhu X, Li J, Zhang P, Peng Y, Chen S, Li Y (2016) A three-dimensional nitrogen-doped graphene aerogel-activated carbon composite catalyst that enables low-cost microfluidic microbial fuel cells with superior performance. J Mater Chem A 4(41):15913–15919CrossRefGoogle Scholar
  5. 5.
    Taberna P-L, Chevallier G, Simon P, Plée D, Aubert T (2006) Activated carbon–carbon nanotube composite porous film for supercapacitor applications. Mater Res Bull 41(3):478–484CrossRefGoogle Scholar
  6. 6.
    Chen Y, Zhang X, Zhang H, Sun X, Zhang D, Ma Y (2012) High-performance supercapacitors based on a graphene–activated carbon composite prepared by chemical activation. RSC Adv 2(20):7747CrossRefGoogle Scholar
  7. 7.
    Yu D, Dai L (2009) Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett 1:467–470CrossRefGoogle Scholar
  8. 8.
    Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531CrossRefGoogle Scholar
  9. 9.
    Gu W, Yushin G (2014) Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene: nanostructured carbon materials for electrochemical capacitor applications. Wiley Interdiscip Rev Energy Environ 3:424–473CrossRefGoogle Scholar
  10. 10.
    Portet C, Taberna PL, Simon P, Flahaut E, Laberty-Robert C (2005) High power density electrodes for carbon supercapacitor applications. Electrochim Acta 50(20):4174–4181CrossRefGoogle Scholar
  11. 11.
    Pico F, Pecharroman C, Ansón A et al (2007) Understanding carbon–carbon composites as electrodes of supercapacitors. J Electrochem Soc 154(6):A579CrossRefGoogle Scholar
  12. 12.
    Xu G, Zheng C, Zhang Q, Huang J, Zhao M, Nie J, Wang X, Wei F (2011) Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors. Nano Res 4(9):870–881CrossRefGoogle Scholar
  13. 13.
    Borenstien A, Noked M, Okashy S, Aurbach D (2013) Composite carbon nano-tubes (CNT)/activated carbon electrodes for non-aqueous super capacitors using organic electrolyte solutions. J Electrochem Soc 160(8):A1282–A1285CrossRefGoogle Scholar
  14. 14.
    Jiang L, Yan J, Zhou Y, Hao L, Xue R, Jiang L, Yi B (2013) Activated carbon/graphene composites with high-rate performance as electrode materials for electrochemical capacitors. J Solid State Electrochem 17(11):2949–2958CrossRefGoogle Scholar
  15. 15.
    Zheng C, Zhou X, Cao H, Wang G, Liu Z (2014) Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material. J Power Sources 258:290–296CrossRefGoogle Scholar
  16. 16.
    Ates M, Cinar D, Caliskan S, Gecgel U, Uner O, Bayrak Y, Candan I (2016) Active carbon/graphene hydrogel nanocomposites as a symmetric device for supercapacitors. Fuller Nanotub Carbon Nanostructures 24(7):427–434CrossRefGoogle Scholar
  17. 17.
    Du F, Yu D, Dai L et al (2011) Preparation of tunable 3D pillared carbon nanotube–graphene networks for high-performance capacitance. Chem Mater 23(21):4810–4816CrossRefGoogle Scholar
  18. 18.
    Kim Y-S, Kumar K, Fisher FT, Yang E-H (2012) Out-of-plane growth of CNTs on graphene for supercapacitor applications. Nanotechnology 23(1):015301CrossRefGoogle Scholar
  19. 19.
    Zhu Y, Li L, Zhang C, Casillas G, Sun Z, Yan Z, Ruan G, Peng Z, Raji ARO, Kittrell C, Hauge RH, Tour JM (2012) A seamless three-dimensional carbon nanotube graphene hybrid material. Nat Commun 3(1):1225CrossRefGoogle Scholar
  20. 20.
    Cheng H, Dong Z, Hu C, Zhao Y, Hu Y, Qu L, Chen N, Dai L (2013) Textile electrodes woven by carbon nanotube–graphene hybrid fibers for flexible electrochemical capacitors. Nanoscale 5(8):3428–3434CrossRefGoogle Scholar
  21. 21.
    Wang W, Guo S, Penchev M, Ruiz I, Bozhilov KN, Yan D, Ozkan M, Ozkan CS (2013) Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors. Nano Energy 2(2):294–303CrossRefGoogle Scholar
  22. 22.
    Liu J, Zhang L, Wu HB, Lin J, Shen Z, Lou XW(D) (2014) High-performance flexible asymmetric supercapacitors based on a new graphene foam/carbon nanotube hybrid film. Energy Environ Sci 7(11):3709–3719CrossRefGoogle Scholar
  23. 23.
    Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC (2011) Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys Chem Chem Phys 13(39):17615–17624CrossRefGoogle Scholar
  24. 24.
    Lu X, Dou H, Gao B, Yuan C, Yang S, Hao L, Shen L, Zhang X (2011) A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors. Electrochim Acta 56(14):5115–5121CrossRefGoogle Scholar
  25. 25.
    Peng L, Feng Y, Lv P, Lei D, Shen Y, Li Y, Feng W (2012) Transparent, conductive, and flexible multiwalled carbon nanotube/graphene hybrid electrodes with two three-dimensional microstructures. J Phys Chem C 116(8):4970–4978CrossRefGoogle Scholar
  26. 26.
    Cheng Y, Lu S, Zhang H, Varanasi CV, Liu J (2012) Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano Lett 12(8):4206–4211CrossRefGoogle Scholar
  27. 27.
    Gao H, Xiao F, Ching CB, Duan H (2012) Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn 3 O 4 nanoparticle/graphene paper electrodes. ACS Appl Mater Interfaces 4(12):7020–7026CrossRefGoogle Scholar
  28. 28.
    Jung N, Kwon S, Lee D, Yoon DM, Park YM, Benayad A, Choi JY, Park JS (2013) Synthesis of chemically bonded graphene/carbon nanotube composites and their application in large volumetric capacitance supercapacitors. Adv Mater 25(47):6854–6858CrossRefGoogle Scholar
  29. 29.
    Yang C, Shen J, Wang C, Fei H, Bao H, Wang G (2014) All-solid-state asymmetric supercapacitor based on reduced graphene oxide/carbon nanotube and carbon fiber paper/polypyrrole electrodes. J Mater Chem A 2(5):1458–1464CrossRefGoogle Scholar
  30. 30.
    Yang S-Y, Chang K-H, Tien H-W, Lee YF, Li SM, Wang YS, Wang JY, Ma CCM, Hu CC (2011) Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors. J Mater Chem 21(7):2374–2380CrossRefGoogle Scholar
  31. 31.
    Huang Z-D, Zhang B, Oh S-W, Zheng QB, Lin XY, Yousefi N, Kim JK (2012) Self-assembled reduced graphene oxide/carbon nanotube thin films as electrodes for supercapacitors. J Mater Chem 22(8):3591CrossRefGoogle Scholar
  32. 32.
    Jha N, Ramesh P, Bekyarova E, Itkis ME, Haddon RC (2012) High energy density supercapacitor based on a hybrid carbon nanotube-reduced graphite oxide architecture. Adv Energy Mater 2(4):438–444CrossRefGoogle Scholar
  33. 33.
    Lin L-Y, Yeh M-H, Tsai J-T, Huang YH, Sun CL, Ho KC (2013) A novel core–shell multi-walled carbon nanotube@graphene oxide nanoribbon heterostructure as a potential supercapacitor material. J Mater Chem A 1(37):11237CrossRefGoogle Scholar
  34. 34.
    Li J, Cheng X, Sun J, Brand C, Shashurin A, Reeves M, Keidar M (2014) Paper-based ultracapacitors with carbon nanotubes-graphene composites. J Appl Phys 115(16):164301CrossRefGoogle Scholar
  35. 35.
    Dong X, Xing G, Chan-Park MB, Shi W, Xiao N, Wang J, Yan Q, Sum TC, Huang W, Chen P (2011) The formation of a carbon nanotube–graphene oxide core–shell structure and its possible applications. Carbon 49(15):5071–5078CrossRefGoogle Scholar
  36. 36.
    Yu D, Goh K, Wang H, Wei L, Jiang W, Zhang Q, Dai L, Chen Y (2014) Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nat Nanotechnol 9(7):555–562CrossRefGoogle Scholar
  37. 37.
    Nunga S, Tito A, Bianco F, et al (2009) Production of carbon nanotubes using CVD with a Fe/Al2O3 catalyst in fluidized bed. In: 12nd SFGP conference. Marseille, France, pp 617–623Google Scholar
  38. 38.
    Acierno D, Bestetti M, Mazzocchia CV, Tito A (2010) A process for the preparation of a catalyst, a catalyst obtained thereby, and its use in the production of nanotubes. European Union Patent # EP2213369A1Google Scholar
  39. 39.
    Hou P-X, Liu C, Cheng H-M (2008) Purification of carbon nanotubes. Carbon 46(15):2003–2025CrossRefGoogle Scholar
  40. 40.
    Staudenmaier L (1898) Preparation of graphitic acid. J Chem Soc Abstr 74:B472–B478CrossRefGoogle Scholar
  41. 41.
    Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339CrossRefGoogle Scholar
  42. 42.
    Celzard A, Marêché JF, Payot F, Furdin G (2002) Electrical conductivity of carbonaceous powders. Carbon 40(15):2801–2815CrossRefGoogle Scholar
  43. 43.
    Marinho B, Ghislandi M, Tkalya E, Koning CE, de With G (2012) Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technol 221:351–358CrossRefGoogle Scholar
  44. 44.
    Trucano P, Chen R (1975) Structure of graphite by neutron diffraction. Nature 258(5531):136–137CrossRefGoogle Scholar
  45. 45.
    Lipson H, Stokes AR (1942) The structure of graphite. Proc R Soc Math Phys Eng Sci 181(984):101–105CrossRefGoogle Scholar
  46. 46.
    Schniepp HC, Li J-L, McAllister MJ et al (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110(17):8535–8539CrossRefGoogle Scholar
  47. 47.
    Wu N, She X, Yang D, Wu X, Su F, Chen Y (2012) Synthesis of network reduced graphene oxide in polystyrene matrix by a two-step reduction method for superior conductivity of the composite. J Mater Chem 22(33):17254CrossRefGoogle Scholar
  48. 48.
    Conway BE (1999) Practical aspects of preparation and evaluation of electrochemical capacitors (chap. 19). In: Electrochemical supercapacitors - scientific fundamentals and technological applications, 1st edn. Springer US, Boston, pp 597–607Google Scholar
  49. 49.
    Laheäär A, Przygocki P, Abbas Q, Béguin F (2015) Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors. Electrochem Commun 60:21–25CrossRefGoogle Scholar
  50. 50.
    Conway BE (1999) Energy density and power density of electrical energy storage devices (chap. 15). In: Electrochemical supercapacitors - scientific fundamentals and technological applications, 1st edn. Springer US, Boston, pp 417–477Google Scholar
  51. 51.
    Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45(21):5925–5950CrossRefGoogle Scholar
  52. 52.
    Hashempour M (2015) Carbon nanostructures for electrochemical energy conversion and storage applications. PhD Dissertation, Politecnico di MilanoGoogle Scholar
  53. 53.
    Lei Z, Christov N, Zhao XS (2011) Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes. Energy Environ Sci 4(5):1866–1873CrossRefGoogle Scholar
  54. 54.
    Frackowiak E, Metenier K, Bertagna V, Beguin F (2000) Supercapacitor electrodes from multiwalled carbon nanotubes. Appl Phys Lett 77(15):2421–2423CrossRefGoogle Scholar
  55. 55.
    Frackowiak E, Béguin F (2002) Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 40(10):1775–1787CrossRefGoogle Scholar
  56. 56.
    Taberna PL, Simon P, Fauvarque JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 150(3):A292CrossRefGoogle Scholar
  57. 57.
    Portet C, Taberna PL, Simon P, Flahaut E (2005) Influence of carbon nanotubes addition on carbon–carbon supercapacitor performances in organic electrolyte. J Power Sources 139(1-2):371–378CrossRefGoogle Scholar
  58. 58.
    Basiricò L, Lanzara G (2012) Moving towards high-power, high-frequency and low-resistance CNT supercapacitors by tuning the CNT length, axial deformation and contact resistance. Nanotechnology 23(30):305401CrossRefGoogle Scholar
  59. 59.
    Zhao F, Vicenzo A, Hashempour M, Bestetti M (2014) Supercapacitor electrodes by direct growth of multi-walled carbon nanotubes on Al: a study of performance versus layer growth evolution. Electrochim Acta 150:35–45CrossRefGoogle Scholar
  60. 60.
    Ujjain SK, Ahuja P, Bhatia R, Attri P (2016) Printable multi-walled carbon nanotubes thin film for high performance all solid state flexible supercapacitors. Mater Res Bull 83:167–171CrossRefGoogle Scholar
  61. 61.
    Dsoke S, Tian X, Täubert C, Schlüter S, Wohlfahrt-Mehrens M (2013) Strategies to reduce the resistance sources on electrochemical double layer capacitor electrodes. J Power Sources 238:422–429CrossRefGoogle Scholar
  62. 62.
    Lundquist RV, Lewis RW (1957) Conductivity of sodium sulfate solutions containing sodium hydroxide or sulfuric acid. Ind Eng Chem Chem Eng Data Ser 2(1):69–72CrossRefGoogle Scholar
  63. 63.
    Jäckel N, Weingarth D, Schreiber A, Krüner B, Zeiger M, Tolosa A, Aslan M, Presser V (2016) Performance evaluation of conductive additives for activated carbon supercapacitors in organic electrolyte. Electrochim Acta 191:284–298CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Chimica, Materiali ed Ingegneria Chimica “G. Natta”Politecnico di MilanoMilanItaly

Personalised recommendations