Journal of Solid State Electrochemistry

, Volume 22, Issue 11, pp 3589–3596 | Cite as

Use of poly[ionic liquid] as a conductive binder in lithium ion batteries

  • Susana Chauque
  • Fabiana Y. Oliva
  • Osvaldo R. Cámara
  • Roberto M. TorresiEmail author
Original Paper


In the present work, we studied the performance of different new binders based on poly[ionic liquids] (POILs) using a well-known negative electrode material such as Li4Ti5O12 (LTO) compound and ionic liquids (ILs) as solvents. We used an IL formed by Pip1,4Tf2N with N-butyl-N-methyl piperidinium (Pip1,4) as the cation and bis(trifluoromethanesulfonyl)imide (Tf2N) as the anion. We tested two POILs as binders, composed of either LiTf2N, Pip1,4Tf2N, and PVDF or poly[diallyldimethylammonium]Tf2N (PDDA) as the polymer precursors (PVDF-IL and PDDA-IL, respectively). The best Li+ transport number as well as the smallest contact angle (electrolyte membrane) was obtained for the PDDA-IL polymer. The swelling effect better facilitates impregnation than the other polymers. The LTO/PDDA-IL combination showed the best specific capacity, 70 mAh g−1, and a stable prolonged cycling. We identified the TiIV/TiIII redox reversible processes by cyclic voltammetry experiments and the differential capacity profiles. Additionally, we measured the Li+ diffusion coefficient to be approximately 10−12 cm2 s−1. When different binders and IL-solvents are employed in a typical LTO cell, we demonstrated that the factors that determine cell performance are the ionic conductivity and the swelling effect.



S. Chauque wishes to thank CONICET for the doctoral fellowship. This work was performed at the Instituto de Química of the Universidade de São Paulo in Brazil in collaboration with INFIQC/CONICET—Universidad Nacional de Córdoba and YPF-Tecnología, in Argentina. The authors also acknowledge FAPESP (15/26308-7) for funding.


This work was supported by Program BID-Foncyt (PICT-2015-1605).


  1. 1.
    Wolfart F, Hryniewicz BM, Góes MS, Corrêa CM, Torresi RM, Minadeo MAOS, Córdoba de Torresi SI, Oliveira RD, Marchesi LF, Vidotti M (2017) J Solid State Electrochem 21(9):2489–2515CrossRefGoogle Scholar
  2. 2.
    Armand M, Tarascon JM (2008) Nature 451(7179):652–657CrossRefPubMedGoogle Scholar
  3. 3.
    Sun X, Radovanovic PV, Cui B (2015) New J. Chem 39:38–63CrossRefGoogle Scholar
  4. 4.
    Balducci A (2017) Top Curr Chem 375:1–27CrossRefGoogle Scholar
  5. 5.
    Nitta N, Wu F, Lee JT, Yushin G (2015) Mater Today 18(5):252–264CrossRefGoogle Scholar
  6. 6.
    Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Energy Environ Sci 4:3243–3262CrossRefGoogle Scholar
  7. 7.
    Scrosati JHB, Abraham KM, Schalkwijk W (eds) (2013) Lithium batteries, 1st edn. Wiley, New JereseyGoogle Scholar
  8. 8.
    Appetecchi GB, Scaccia S, Tizzani C, Alessandrini F, Passerini S (2006) J Electrochem Soc 153(9):A1685–A1691CrossRefGoogle Scholar
  9. 9.
    Martins VL, Sanchez-Ramirez N, Ribeiro MCC, Torresi RM (2015) Phys Chem Chem Phys 17(35):23041–23051CrossRefPubMedGoogle Scholar
  10. 10.
    Robledo CB, Thomas JE, Luque G, Leiva EPM, Cámara O, Barraco D, Visintin A (2014) Electrochim Acta 140:160–167CrossRefGoogle Scholar
  11. 11.
    Peled E, Tow DB, Merson A, Gladkich A, Burstein L, Golodnitsky D (2001) J Power Sources 98:52–57CrossRefGoogle Scholar
  12. 12.
    Zhuang GV, Xu K, Jow TR, Ross PN Jr (2004) Electrochem Solid-State Lett 7(8):A224–A227CrossRefGoogle Scholar
  13. 13.
    Yuan T, Tan Z, Ma C, Yang J, Ma ZF, Zheng S (2017) Adv Energy Mater 7(12):1601625–1601650CrossRefGoogle Scholar
  14. 14.
    Odziomek M, Chaput F, Rutkowska A, Świerczek K, Olszewska D, Sitarz M, Lerouge F, Parola S (2017) Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries. Nat Commun. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sun X, Hegde M, Zhang Y, He M, Gu L, Wang Y, Shu J (2014) Int J Electrochem Sci 9:1583–1596Google Scholar
  16. 16.
    Sun L, Wang J, Jiang K, Fan S (2014) J Power Sources 248:265–272CrossRefGoogle Scholar
  17. 17.
    Singh DP, Mulder FM, Wagemaker M (2013) Electrochem Commun 35:124–127CrossRefGoogle Scholar
  18. 18.
    Sandhya CP, John B, Gouri C (2013) J Mater Sci 48(17):5827–5832CrossRefGoogle Scholar
  19. 19.
    He YB, Li B, Liu M, Zhang C, Lv W, Yang C, Li J, Du H, Zhang B, Kim JK, Kang F (2012) Sci Rep 2(1):913–922CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Pont AL, Marcilla R, De Meatza I, Grande H, Mecerreyes D (2009) J Power Sources 188(2):558–563CrossRefGoogle Scholar
  21. 21.
    Benedetti TM, Torresi RM (2013) Langmuir 29(50):15589–15595CrossRefPubMedGoogle Scholar
  22. 22.
    Martins VL, Rennie AJR, Lesowiec J, Torresi RM, Hall PJ (2017) J Electrochem Soc 164(13):A3253–A3258CrossRefGoogle Scholar
  23. 23.
    Pappenfus TM, Henderson WA, Owens BB, Mann KR, Smyrl WH (2004) J Electrochem Soc 151:209–215CrossRefGoogle Scholar
  24. 24.
    Chauque S, Oliva FY, Visintin A, Barraco D, Leiva EPM, Cámara OR (2017) J Electroanal Chem 799:142–155CrossRefGoogle Scholar
  25. 25.
    Bazito FFC, Kawano Y, Torresi RM (2007) Electrochim Acta 52(23):6427–6437CrossRefGoogle Scholar
  26. 26.
    Bard AJ, Faulkner LR, Swain E, Robey C (eds) (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  27. 27.
    Bruce PG, Evans J, Vincent CA (1988) Solid State Ionics 30:918–922CrossRefGoogle Scholar
  28. 28.
    Fernicola A, Croce F, Scrosati B, Watanabe T, Ohno H (2007) J Power Sources 174(1):342–348CrossRefGoogle Scholar
  29. 29.
    Yoon H, Howlett PC, Best AS, Forsyth M, Macfarlane DR (2013) J Electrochem Soc 160:1629–1637CrossRefGoogle Scholar
  30. 30.
    Ogihara W, Washiro S, Nakajima H, Ohno H (2006) Electrochim Acta 51(13):2614–2619CrossRefGoogle Scholar
  31. 31.
    Thompson H (1979) J Electrochem Soc 126(4):608–616CrossRefGoogle Scholar
  32. 32.
    Chauque S, Robledo CB, Leiva EPM, Oliva FY, Camara OR (2014) ECS Trans 63(1):113–128CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Investigaciones en Fisicoquímica de Córdoba, Facultad de Ciencias QuímicasUniversidad Nacional de CórdobaCórdobaArgentina
  2. 2.Departamento de Química Fundamental, Instituto de QuímicaUniversidade de São PauloSão PauloBrazil

Personalised recommendations