Journal of Solid State Electrochemistry

, Volume 22, Issue 11, pp 3597–3606 | Cite as

Measurement of electrochemical noise of a Li/MnO2 primary lithium battery

  • E. A. AstafevEmail author
  • A. E. Ukshe
  • Yu. A. Dobrovolsky
Original Paper


Electrochemical noise of a Li/MnO2 primary lithium battery was measured and analyzed during discharge process for the first time. The amplitude of the noise is shown to increase during battery discharge. The power spectral density frequency dependences of the noise are calculated for various stages of the battery discharge. The amplitudes of power spectral densities of the current noise nearly linear depend on the discharge voltage for frequencies below 1 Hz. The slope of the spectral power density frequency dependence of voltage noise changes from − 1 to − 2 during the battery discharge. It was found that the magnitude and slope of the power spectral density frequency dependence of the noise can be considered as a discharge criterion for a primary lithium battery.


Electrochemical noise Spectral power density Chemical power sources Primary lithium battery Manganese dioxide 


  1. 1.
    Hu X, Li SE, Yang Y (2016) Advanced machine learning approach for lithium-ion battery state estimation in electric vehicles. IEEE Trans Trans Electrification 2(2):140–149CrossRefGoogle Scholar
  2. 2.
    Bloom I, Walker LK, Basco JK, Malkow T, Saturnio A, de Marco G, Tsotridis G (2013) A comparison of fuel cell testing protocols – a case study: protocols used by the U.S. Department of Energy, European Union, International Electrotechnical Commission/Fuel Cell Testing and Standardization Network, and Fuel Cell Technical Team. J Power Sources 243:451–457CrossRefGoogle Scholar
  3. 3.
    de Beer C, Barendse PS, Pillay P (2015) Fuel cell condition monitoring using optimized broadband impedance spectroscopy. IEEE Trans Ind Electron 62(8):5306–5316CrossRefGoogle Scholar
  4. 4.
    Katayama N, Kogoshi S (2015) Real-time electrochemical impedance diagnosis for fuel cells using a DC–DC converter. IEEE Trans Energy Convers 30(2):707–713CrossRefGoogle Scholar
  5. 5.
    Farmann A, Waag W, Sauer DU (2015) Adaptive approach for on-board impedance parameters and voltage estimation of lithium-ion batteries in electric vehicles. J Power Sources 299:176–188CrossRefGoogle Scholar
  6. 6.
    Bertocci U, Huet F, Nogueira RP, Rousseau P (2002) Drift removal procedures in the analysis of electrochemical noise. Corrosion 58(4):337–347CrossRefGoogle Scholar
  7. 7.
    Gabrielli C, Huet F, Keddam M (1986) Investigation of electrochemical processes by an electrochemical noise analysis. Theoretical and experimental aspects in potentiostatic regime. Electrochim Acta 31(8):1025–1039CrossRefGoogle Scholar
  8. 8.
    Bertocci U, Huet F (1995) Noise analysis applied to electrochemical systems. Corrosion 51(2):131–144CrossRefGoogle Scholar
  9. 9.
    Tyagai VA, Luk’yanchikova NB (1967) Equilibrium fluctuations in electrochemical processes. Elektrokhimiya (in Russian) 3:316–322Google Scholar
  10. 10.
    Tyagai VA (1971) Faradaic noise of complex electrochemical reactions. Electrochim Acta 16(10):1647–1654CrossRefGoogle Scholar
  11. 11.
    Tyagai VA (1974) Noise in electrochemical systems. Elektrokhimiya 10:3–24Google Scholar
  12. 12.
    Barker GC (1969) Noise connected with electrode processes. J Electroanal Chem 21(1):127–136CrossRefGoogle Scholar
  13. 13.
    Barker GC (1975) Large signal aperiodic equivalent electrical circuits for diffusion and faradaic impedances. J Electroanal Chem 58(1):5–18CrossRefGoogle Scholar
  14. 14.
    Barker GC (1977) Faradaic reaction noise. J Electroanal Chem 82(1-2):145–155CrossRefGoogle Scholar
  15. 15.
    Grafov BM (1966) On the equilibrium fluctuations in a stationary state. Elektrokhimiya 2:1249–1254Google Scholar
  16. 16.
    Grafov BM, Levich VG (1968) On the fluctuation-dissipation theorem in a stationary state. Sov Phys JETP 54:507–510Google Scholar
  17. 17.
    Martemyanov SA, Petrovskiy NV, Grafov BM (1991) Turbulent pulsations of the microelectrode limiting diffusion current. J Appl Electrochem 21(12):1099–1102CrossRefGoogle Scholar
  18. 18.
    Grafov BM, Dobrovol’skii YA, Davydov AD, Ukshe AE, Klyuev AL, Astaf’ev EA (2015) Electrochemical noise diagnostics: analysis of algorithm of orthogonal expansions. Russ J Electrochem 51(6):503–507CrossRefGoogle Scholar
  19. 19.
    Klyuev AL, Davydov AD, Grafov BM, Dobrovolskii YA, Ukshe AE, Astaf’ev EA (2016) Electrochemical noise spectroscopy: method of secondary Chebyshev spectrum. Russ J Electrochem 52(10):1001–1005CrossRefGoogle Scholar
  20. 20.
    Grafov BM, Dobrovolskii YA, Klyuev AL, Ukshe AE, Davydov AD, Astaf’ev EA (2017) Median Chebyshev spectroscopy of electrochemical noise. J Solid State Electrochem 21(3):915–918CrossRefGoogle Scholar
  21. 21.
    Singh PS, Lemay SG (2016) Stochastic processes in electrochemistry. Anal Chem 88(10):5017–5027CrossRefPubMedGoogle Scholar
  22. 22.
    Martinet S, Durand R, Ozil P, Leblanc P, Blanchard P (1999) Application of electrochemical noise analysis to the study of batteries: state-of-charge determination and overcharge detection. J Power Sources 83(1-2):93–99CrossRefGoogle Scholar
  23. 23.
    Legros B, Thivel PX, Bultel Y, Nogueira RP (2011) First results on PEMFC diagnosis by electrochemical noise. Electrochem Commun 13(12):1514–1516CrossRefGoogle Scholar
  24. 24.
    Kanevskii LS (2009) Special features of discharge characteristics of different types of lithium–thionyl chloride cells and the problem of their diagnostics. Russ J Electrochem 45(8):835–846CrossRefGoogle Scholar
  25. 25.
    Grafov BM, Kanevskii LS, Astafiev MG (2005) Noise characterization of surface processes of the Li/organic electrolyte interface. J Appl Electrochem 35(12):1271–1276CrossRefGoogle Scholar
  26. 26.
    Astafev EA, Ukshe AE, Manzhos RA, Dobrovolsky Yu A, Lakeev SG, Timashev SF (2017) Flicker noise, spectroscopy, in,the analysis of electrochemical noise, of,hydrogen-air PEM, fuel,cell during its degradation. Int,J Electrochem Sci 12:1742–1754CrossRefGoogle Scholar
  27. 27.
    Linden D, Reddy TB (eds) (2002) Handbook of batteries, 3rd edn. New York, McGrow-HillGoogle Scholar
  28. 28.
    Aurbach D, Markovsky B, Levi MD, Levi E, Schechter A, Moshkovich M, Cohen Y (1999) New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries. J Power Sources 81–82:95–111CrossRefGoogle Scholar
  29. 29.
    Dose WM, Sharma N, Donne SW (2014) Discharge mechanism of the heat treated electrolytic manganese dioxide cathode in a primary Li/MnO2 battery: an in-situ and ex-situ synchrotron X-ray diffraction study. J Power Sources 258:155–163CrossRefGoogle Scholar
  30. 30.
    Ohzuku T, Kitagawa M, Hirai T (1989) Electrochemistry of manganese dioxide in lithium nonaqueous cell. I X-ray diffractional study on the reduction of electrolytic manganese dioxide. J Electrochem Soc 136:3169–3174CrossRefGoogle Scholar
  31. 31.
    Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194CrossRefGoogle Scholar
  32. 32.
    Srinivasan V, Newman J (2004) Discharge model for the lithium iron-phosphate electrode. J Electrochem Soc 151(10):A1517–A1529CrossRefGoogle Scholar
  33. 33.
    Van der Ven A, Bhattacharya J, Belak AA (2013) Understanding Li diffusion in Li-intercalation compounds. Acc Chem Res 46(5):1216–1225CrossRefPubMedGoogle Scholar
  34. 34.
    Tan H, Wang S (2014) Kinetic behavior of manganese dioxide in Li/MnO2 primary batteries investigated using electrochemical impedance spectroscopy under nonequilibrium state. 161:A1927–A1932Google Scholar
  35. 35.
    Liu Q, Wang S, Cheng H (2013) High rate capabilities Fe-doped EMD electrodes for li/MnO2 primary battery. Int J Electrochem Sci 8:10540–10548Google Scholar
  36. 36.
    Wang S, Liu Q, Yu J, Zeng J (2012) Anisotropic expansion and high rate discharge performance of V-doped MnO2 for Li/MnO2 primary battery. Int J Electrochem Sci 7:1242–1250Google Scholar
  37. 37.
    Astafev EA (2018) Multi-purpose high resolution device for measurement of electrochemical noise. Prib Tekh Eksp1:151–152Google Scholar
  38. 38.
    Nyquist H (1928) Thermal agitation of electric charge in conductors. Phys Rev 32(1):110–113CrossRefGoogle Scholar
  39. 39.
    Martemianov S, Adiutantov N, Evdokimov YK, Madier L, Maillard F, Thomas A (2015) New methodology of electrochemical noise analysis and applications for commercial Li-ion batteries. J Solid State Electrochem 19(9):2803–2810CrossRefGoogle Scholar
  40. 40.
    Bartlett MS (1948) Smoothing periodograms from time-series with continuous spectra. Nature 161(4096):686–687CrossRefGoogle Scholar
  41. 41.
    Welch PD (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15(2):70–73CrossRefGoogle Scholar
  42. 42.
    Astafev EA, Ukshe AE, Gerasimova EV, Dobrovolsky YA, Manzhos RA (2018) Electrochemical noise of a hydrogen-air polymer electrolyte fuel cell operating at different loads. J Solid State Electrochem 22(6):1839–1849CrossRefGoogle Scholar
  43. 43.
    Astafev EA, Ukshe AE, Dobrovolsky Yu A (2018) The model of electrochemical noise of a hydrogen-air fuel cell. J Electrochem Soc 165(9):F604–F612. CrossRefGoogle Scholar
  44. 44.
    Astaf’ev EA (2018) Electrochemical noise measurement of polymer membrane fuel cell under load. Russ J Electrochem 54(6):554–560CrossRefGoogle Scholar
  45. 45.
    Timashev SF (2007) Flicker-noise spectroscopy: information in chaotic signals. Fizmatlit, MoscowGoogle Scholar
  46. 46.
    Timashev SF, Polyakov YS (2007) Review of flicker noise spectroscopy in electrochemistry. Fluct Noise Lett 7(02):R15–R17CrossRefGoogle Scholar
  47. 47.
    Li SE, Wang B, Peng H, Hu X (2014) An electrochemistry-based impedance model for lithium-ion batteries. J Power Sources 258:9–18CrossRefGoogle Scholar
  48. 48.
    Jean-Marcel A, Joze M, Stane P, Miran G (2010) On the interpretation of measured impedance spectra of insertion cathodes for lithium-ion batteries. J Electrochem Soc 157(11):A1218–A1228CrossRefGoogle Scholar
  49. 49.
    Hassibi A, Navid R, Dutton RW, Lee TH (2004) Comprehensive study of noise processes in electrode electrolyte interfaces. J Appl Phys 96(2):1074–1082CrossRefGoogle Scholar
  50. 50.
    Beletskiy AF (1967) An introduction to the principles of linear circuits. Svyaz, MoscowGoogle Scholar
  51. 51.
    Kuparowitz T, Sedlakova V, Sedlak P, Sikula J (2017) Low frequency noise of electrochemical power sources. In Noise and Fluctuations (ICNF), 2017 International Conference on. IEEE 1-4Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Problems of Chemical Physics RASChernogolovkaRussia

Personalised recommendations