Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 11, pp 3547–3555 | Cite as

Lead(II) ion detection in purified drinking water by nickel hexacyanoferrate-modified n-Si electrode in presence of dihydroxybenzene

  • Lusheng Chen
  • Fenghua Zhang
  • Sue Li
  • Chunting Li
  • Hua Zhang
  • Huaixiang Li
Original Paper
  • 86 Downloads

Abstract

To develop feasible probes for heavy metal ions has been considered as one of the most important research topics, due to the significance in monitoring and evaluating the toxicity of environmental water system, especially for the drinking water. This work provided a probe for Pb(II) ion detection in purified drinking water. Nickel hexacyanoferrate (NiHCF) films were prepared by vacuum evaporating nickel fine wire and transforming in a potassium ferricyanide solution on the front surface of platinum coated n-silicon. The transformed NiHCF film shows a reversible insertion electrochemistry and possesses electrocatalytic activity under illumination. The NiHCF-modified electrode was used as photoelectrode and dihydroxybenzene as photocurrent mediators to make up photoelectrochemical (PEC) sensor for Pb(II) ion detection in purified drinking water based on a two-electrode cell in absence of reference electrode and operated at zero working voltage. We have investigated the effects of Pb(II) ions on the photocurrent of hydroquinone or catechol in the purified water. The assay demonstrated good photocurrent responses by adding different concentrations of Pb(II) ion into purified drinking water with a linear range of 20–1560 nM and the limit of determination (based on S/N = 3) is 4.8 nM and 5.3 nM for the presence of hydroquinone and catechol, respectively.

Keywords

Silicon electrode Photocurrent PEC sensor Lead ion detection Dihydroxybenzene 

Notes

Funding

This work was supported by the National Natural Science Foundation of China (No: 21405096) and Student Innovation Training Project of Shandong Normal University (No: 201610445055).

Supplementary material

10008_2018_4063_MOESM1_ESM.doc (162 kb)
ESM 1 (DOC 162 kb)

References

  1. 1.
    Adarakatti PS, Malingappa P (2016) Amino-calixarene-modified graphitic carbon as a novel electrochemical interface for simultaneous measurement of lead and cadmium ions at picomolar level. J Solid State Electrochem 20(12):3349–3358CrossRefGoogle Scholar
  2. 2.
    Cheng YM, Fa HB, Yin W, Hou CJ, Huo DQ, Liu FM, Zhang Y, Chen C (2016) A sensitive electrochemical sensor for lead based on gold nanoparticles nitrogen-doped graphene composites functionalized with L-cysteine-modified electrode. J Solid State Electrochem 20(2):327–335CrossRefGoogle Scholar
  3. 3.
    Lee PM, Wang Z, Liu X, Chen Z, Liu E (2015) Glassy carbon electrode modified by graphene-gold nanocomposite coating for detection of trace lead ions in acetate buffer solution. Thin Solid Films 584:85–89CrossRefGoogle Scholar
  4. 4.
    Li X, Zhou H, Fu C, Wang F, Ding Y, Kuang Y (2016) A novel design of engineered multi-walled carbon nanotubes materialand its improved performance in simultaneous detection of cd(II) andPb(II) by square wave anodic stripping voltammetry. Sensors Actuators B Chem 236:144–152CrossRefGoogle Scholar
  5. 5.
    Liu FM, Nie J, Qin YN, Yin W, Hou CJ, Huo DQ, He B, Xia TC, Fa HB (2017) A biomimetic sensor based on specific receptor ETBD and Fe3O4@au/MoS2/GN for signal enhancement shows highly selective electrochemical response to ultra-trace lead (II). J Solid State Electrochem 21(11):3257–3268CrossRefGoogle Scholar
  6. 6.
    Liu Y, Zhou Q, Li J, Lei M, Yan X (2016) Selective and sensitive chemosensor for lead ions using fluorescentcarbon dots prepared from chocolate by one-step hydrothermalmethod. Sensors Actuators B Chem 237:597–604CrossRefGoogle Scholar
  7. 7.
    Zhou G, Chang J, Cui S, Pu H, Wen Z, Chen J (2014) Real-time, selective detection of Pb2+ in water using a reduced graphene oxide/gold nanoparticle field-effect transistor device. ACS Appl Mater Interfaces 6(21):19235–19241CrossRefPubMedGoogle Scholar
  8. 8.
    Aleluia ACM, de Santana FA, Brandao GC, Brandao FSLC (2017) Sequential determination of cadmium and lead in organic pharmaceutical formulations using high-resolution continuum source graphite furnace atomic absorption spectrometry. Microchem J 130:157–161CrossRefGoogle Scholar
  9. 9.
    Shan H, Li Z, Li M (2007) Ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate as a solvent for extraction of lead in environmental water samples with detection by graphite furnace atomic absorption spectrometry. Microchim Acta 159:95–100CrossRefGoogle Scholar
  10. 10.
    Hou XF, Zhang ZJ, Zhao Y, Ma J (2007) Microdialysis sampling and chemiluminescence detection for in vivo and real-time study of the lead metabolism in rabbit blood. Microchim Acta 159(3-4):223–228CrossRefGoogle Scholar
  11. 11.
    Jiokeng SLZ, Dongmo LM, Ymélé E, Ngameni E, Tonlé IK (2017) Sensitive stripping voltammetry detection of Pb(II) at a glassy carbonelectrode modified with an amino-functionalized attapulgite. Sensors Actuators B Chem 242:1027–1034CrossRefGoogle Scholar
  12. 12.
    Beltrán B, Leal LO, Ferrer L, Cerdà V (2015) Determination of lead by atomic fluorescence spectrometry using an automated extraction/preconcentration flow system. J Anal At Spectrom 30(5):1072–1079CrossRefGoogle Scholar
  13. 13.
    Sadi BB, Lee JY, Chen J (2016) A dispersive liquid–liquid microextraction technique for the determination of 210 Pb in drinking water samples. J Radioanal Nucl Chem 310(1):99–108CrossRefGoogle Scholar
  14. 14.
    Behbahani M, Abandansari HS, Salarian M, Babapour M, Bagheri A, Nabid MR (2014) Synthesis and application of a thermosensitive tri-block copolymer as an efficient sample treatment technique for preconcentration and ultra-trace detection of lead ions. Microchim Acta 181(1-2):129–137CrossRefGoogle Scholar
  15. 15.
    Lisak G, Bobacka J, Lewenstam A (2012) Recovery of nanomolar detection limit of solid-contact lead (II)-selective electrodes by electrode conditioning. J Solid State Electrochem 16(9):2983–2991CrossRefGoogle Scholar
  16. 16.
    Li T, Dong S, Wang E (2010) A lead(II)-driven DNA molecular device for turn-on fluorescence detection of lead(II) ion with high selectivity and sensitivity. J Am Chem Soc 132(38):13156–13157CrossRefPubMedGoogle Scholar
  17. 17.
    Chu W, Zhang Y, Li D, Barrow CJ, Wang H, Yang W (2015) A biomimetic sensor for the detection of lead in water. Biosens Bioelectron 67:621–624CrossRefPubMedGoogle Scholar
  18. 18.
    Yan M, Zhu C, Huang Y, Yan J, Chen A (2017) Ultrasensitive detection of lead(II) using a turn-on probe based on the use of an aptamer and a water-soluble fluorescent perylene probe. Microchim Acta 184(7):2439–2444CrossRefGoogle Scholar
  19. 19.
    Kumar KS, Rao P, Krishnaiah L, Rao KS, Naidu GRK, Chiranjeevi P (2004) Detection of lead in vegetables with new chromogenic regent by spectrophotometry. Environ Monit Assess 98(1-3):191–199CrossRefPubMedGoogle Scholar
  20. 20.
    Wang Y, Wang J, Yang F, Yang X (2010) Spectrophotometric detection of lead(II) ion using unimolecular peroxidase-like deoxyribozyme. Microchim Acta 171(1-2):195–201CrossRefGoogle Scholar
  21. 21.
    Wang GL, Liu KL, Dong YM, Wu XM, Li ZJ, Zhang C (2014) A new approach to light up the application of semiconductor nanomaterials for photoelectrochemical biosensors: using self-operating photocathode as a highly selective enzyme sensor. Biosens Bioelectron 62:66–72CrossRefPubMedGoogle Scholar
  22. 22.
    Hao WL, Li HX, Shen CY, Liu SL (2014) Nickel oxide hydroxide/platinum double layers modified n-silicon electrode for hydrogen peroxide determination. J Solid State Electrochem 18(4):1041–1047CrossRefGoogle Scholar
  23. 23.
    Hu L, Fong CC, Zhang X, Chan LL, Lam PKS, Chu PK, Wong KY, Yang M (2016) Au nanoparticles decorated TiO2 nanotube arrays as a recyclable sensor for photoenhanced electrochemical detection of bisphenol a. Environ Sci Technol 50(8):4430–4438CrossRefPubMedGoogle Scholar
  24. 24.
    Yu Z, Lv S, Ren R, Cai G, Tang D (2017) Photoelectrochemical sensing of hydrogen peroxide at zero working potential using a fluorine-doped tin oxide electrode modified with BiVO4 microrods. Microchim Acta 184(3):799–806CrossRefGoogle Scholar
  25. 25.
    Lin YJ, Lin JH (2014) Annealing effect on Schottky barrier inhomogeneity of graphene/n-type Si Schottky diodes. Appl Surf Sci 311:224–229CrossRefGoogle Scholar
  26. 26.
    Guo Z, Seol ML, Gao C, Kim MS, Ahn JH, Choi YK, Huang XJ (2016) Functionalized porous Si nanowires for selective and simultaneous electrochemical detection of cd(II) and Pb(II) ions. Electrochim Acta 211:998–1005CrossRefGoogle Scholar
  27. 27.
    Tian J, Zhao H, Quan X, Zhang Y, Yu H, Chen S (2014) Fabrication of graphene quantum dots/silicon nanowires nanohybridsfor photoelectrochemical detection of microcystin-LR. Sensors Actuators B Chem 196:532–538CrossRefGoogle Scholar
  28. 28.
    Xu Q, Zhao Y, Wei Y, Yang W, Li F, Gu M (2008) Effect of Ni/Fe spinel ferrites overlay on the photoelectric conversion properties of n-Si (111) wafer. Solid State Sci 10(3):337–345CrossRefGoogle Scholar
  29. 29.
    de Tacconi NR, Rajeshwar K (2003) Metal hexacyanoferrates: electrosynthesis, in situ characterization, and applications. Chem Mater 15(16):3046–3062CrossRefGoogle Scholar
  30. 30.
    Lipson AL, Han SD, Kim S, Pan B, Sa N, Liao C, Fister TT, Burrell AK, Vaughey JT, Ingram BJ (2016) Nickel hexacyanoferrate, a versatile intercalation host for divalent ions from nonaqueous electrolytes. J Power Sources 325:646–652CrossRefGoogle Scholar
  31. 31.
    Chen W, Tang J, Xia XH (2009) Composition and shape control in the construction of functional nickel hexacyanoferrate nanointerfaces. J Phys Chem C 113(52):21577–21581CrossRefGoogle Scholar
  32. 32.
    Zamponi S, Berrettoni M, Kulesza PJ, Miecznikowski K, Malik MA, Makowski O, Marassi R (2003) Influence of experimental conditions on electrochemical behavior of Prussian blue type nickel hexacyanoferrate film. Electrochim Acta 48(28):4261–4269CrossRefGoogle Scholar
  33. 33.
    Golabi SM, Noor-Mohammadi F (1998) Electrocatalytic oxidation of hydrazine at cobalt hexacyanoferrate-modified glassy carbon, Pt and au electrodes. J Solid State Electrochem 2(1):30–37CrossRefGoogle Scholar
  34. 34.
    Cataldi TRI, Guascito R, Salvi AM (1996) XPS study and electrochemical behaviour of the nickel hexacyanoferrate film electrode upon treatment in alkaline solutions. J Electroanal Chem 417(1-2):83–88CrossRefGoogle Scholar
  35. 35.
    Malik MA, Kulesza PJ, Marassi R, Nobili F, Miecznikowski K, Zamponi S (2004) Countercation intercalation and kinetics of charge transport during redox reactions of nickel hexacyanoferrate. Electrochim Acta 49(25):4253–4258CrossRefGoogle Scholar
  36. 36.
    Li S, Zhang F, Chen L, Zhang H, Li H (2018) Nickel oxyhydroxide functionalized n-silicon photoelectrode for the photocurrent determination of hg(II) ions at zero working voltage. Sensors Actuators B Chem 257:9–15CrossRefGoogle Scholar
  37. 37.
    Li H, Hao W, Hu J, Wu Y (2013) A photoelectrochemical sensor based on nickel hydroxyl-oxide modified n-silicon electrode for hydrogen peroxide detection in an alkaline solution. Biosens Bioelectron 47:225–230CrossRefPubMedGoogle Scholar
  38. 38.
    Xue Z, He N, Rao H, Hu C, Wang X, Wang H, Liu X, Lu X (2017) A green synthetic strategy of nickel hexacyanoferrate nanoparticals supported on the graphene substrate and its non-enzymatic amperometric sensing application. Appl Surf Sci 396:515–522CrossRefGoogle Scholar
  39. 39.
    Kulesza PJ, Malik MA, Schmidt R, Smolinska A, Miecznikowski K, Zamponi S, Czerwinski A, Berrettoni M, Marassi R (2000) Electrochemical preparation and characterization of electrodes modified with mixed hexacyanoferrates of nickel and palladium. J Electroanal Chem 487(1):57–65CrossRefGoogle Scholar
  40. 40.
    Bagkar N, Betty CA, Hassan PA, Kahali K, Bellare JR, Yakhmi JV (2006) Self-assembled films of nickel hexacyanoferrate: electrochemical properties and application in potassium ion sensing. Thin Solid Films 497(1-2):259–266CrossRefGoogle Scholar
  41. 41.
    Arul NS, Han JI, Chen PC (2018) Fabrication of β-Ni(OH)2//γ-Fe2O3 nanostructures for high-performance asymmetric supercapacitors. J Solid State Electrochem 22(1):293–302CrossRefGoogle Scholar
  42. 42.
    Wu P, Shi Y, Cai C (2006) Electrochemical preparation and characterization of dysprosium hexacyanoferrate modified electrode. J Solid State Electrochem 10(5):270–276CrossRefGoogle Scholar
  43. 43.
    Wu H, Hu J, Li H, Li H (2013) A novel photo-electrochemical sensor for determination of hydroquinone basedon copper hexacyanoferrate and platinum films modified n-silicon electrodeHongyan. Sensors Actuators B Chem 182:802–808CrossRefGoogle Scholar
  44. 44.
    Li HX, Ban YP, Gao Q, Wu HD (2012) Hydrogen peroxide detection with n-silicon photoelectrodes modified by nickel hexacyanoferrate films. Sci Adv Mater 4:936–940Google Scholar
  45. 45.
    Zhang H, Gao Q, Li H (2016) A novel photoelectrochemical hydrogen peroxide sensor based on nickel(II)-potassium hexacyanoferrate-graphene hybrid materials modified n-silicon electrode. J Solid State Electrochem 20(6):1565–1573CrossRefGoogle Scholar
  46. 46.
    Li H, Ban Y, Gao Q, Wei Q (2012) A new hydrogen peroxide sensor based on Prussian blue modified n-n+-Si photo-electrode. Integr Ferroelectr 135(1):110–118CrossRefGoogle Scholar
  47. 47.
    Miecznikowski K, Chojak M, Steplowska W, Malik MA, Kulesza PJ (2004) Microelectrochemical electronic effects in two-layer structures of distinct Prussian blue type metal hexacyanoferrates. J Solid State Electrochem 8:868–875CrossRefGoogle Scholar
  48. 48.
    Pauliukaite R, Florescu M, Brett CMA (2005) Characterization of cobalt- and copper hexacyanoferrate modified carbon film electrodes for redox-mediated biosensors. J Solid State Electrochem 9(5):354–362CrossRefGoogle Scholar
  49. 49.
    Widmann A, Kahlert H, Petrovic-Prelevic I, Wulff H, Yakhmi JV, Bagkar N, Scholz F (2002) Structure, insertion electrochemistry, and magnetic properties of a new type of substitutional solid solutions of copper, nickel, and iron hexacyanoferrates/hexacyanocobaltates. Inorg Chem 41(22):5706–5715CrossRefPubMedGoogle Scholar
  50. 50.
    Committee AM (1987) Recommendations for the definition, estimation and use of the detection limit. Analyst 112:199–204CrossRefGoogle Scholar
  51. 51.
    Zhao G, Yin Y, Wang H, Liu G, Wang Z (2016) Sensitive stripping voltammetric determination of cd(II) and Pb(II) by a bi/multi-walled carbon nanotube-emeraldine base polyaniline-Nafion composite modified glassy carbon electrode. Electrochim Acta 220:267–275CrossRefGoogle Scholar
  52. 52.
    Toghill KE, Wildgoose GG, Moshar A, Mulcahy C, Comptona RG (2008) The fabrication and characterization of a bismuth nanoparticle modified boron doped diamond electrode and its application to the simultaneous determination of cadmium(II) and lead(II). Electroanalysis 20(16):1731–1737CrossRefGoogle Scholar
  53. 53.
    Wang ZM, Guo HW, Liu E, Yang GC, Khun NW (2010) Bismuth/polyaniline/glassy carbon electrodes prepared with different protocols for stripping voltammetric determination of trace cd and Pb in solutions having surfactants. Electroanalysis 22(2):209–215CrossRefGoogle Scholar
  54. 54.
    Oularbi L, Turmine M, Rhazi ME (2017) Electrochemical determination of traces lead ions using a new nanocomposite of polypyrrole/carbon nanofibers. J Solid State Electrochem 21(11):3289–3300CrossRefGoogle Scholar
  55. 55.
    Li X, Wen H, Fu Q, Peng D, Yu J, Zhang Q, Huang X (2016) Morphology-dependent NiO modified glassy carbon electrode surfacefor lead(II) and cadmium(II) detection. Appl Surf Sci 363:7–12CrossRefGoogle Scholar
  56. 56.
    Zhang W, Xu Y, Tahir HE, Zou X (2017) Determinations of trace lead in various natural samples by a novel active microband-electrode probe. Chem Eng J 309:305–312CrossRefGoogle Scholar
  57. 57.
    Dai S, Zhang X, Yu L, Yang Y (2010) The determination of trace lead in drinking water by flow injection spectrophotometry. Spectrochim Acta A 75(1):330–333CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lusheng Chen
    • 1
  • Fenghua Zhang
    • 1
  • Sue Li
    • 1
  • Chunting Li
    • 1
  • Hua Zhang
    • 2
  • Huaixiang Li
    • 1
  1. 1.College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine ChemicalsShandong Normal UniversityJinanPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringShandong University of TechnologyZiboPeople’s Republic of China

Personalised recommendations