Journal of Solid State Electrochemistry

, Volume 22, Issue 11, pp 3631–3637 | Cite as

ZnO and carbon nanocomposites for enhanced photoelectrochemical sensing activity: influence of the carbon content

  • M. GaidiEmail author
  • M. Salem
  • S. Akir
  • I. Massoudi
  • T. Ghrib
  • Y. Litaiem
  • K. Khirouni
Original Paper


In this work, carbon and zinc oxide (ZnO:C) nanocomposites were obtained by a hydrothermal reaction process. ZnO nanoparticles were first prepared by a homogeneous coprecipitation method. Nanocomposites with atomic concentrations of carbon ranging from 39.4 to 69.7 wt.% were then attained. The microstructure and morphology of each prepared nanocomposite was investigated by X-ray diffraction (XRD), Raman spectroscopy, and scanning electron microscopy (SEM). The ZnO:C nanocomposites were found to present a wurtzite-type hexagonal crystalline structure that shifted towards an amorphous state with increasing C content. Results showed that incorporating the covalent carbon at O sites in the ZnO lattice causes lattice compression. Due to their low band-gap energies, the photoresponses of the ZnO:C nanocomposites extended into the visible region. The sensing characteristics of ZnO:C nanocomposite films were also investigated, and a major improvement in the photoelectrochemical (PEC) efficiency was obtained when the C content was 39 wt.%.


ZnO Carbon PEC Hydrothermal SEM 



The authors would like to acknowledge the financial support from the University of Sharjah (project No. 1602143028-P). The authors are also grateful to Mohamed Shameer and Mohamed Adil Abbassi for their technical support.


  1. 1.
    Huang J, Yin Z, Zheng Q (2011) Applications of ZnO in organic and hybrid solar cells. Energy Environ Sci 4:3861–3877CrossRefGoogle Scholar
  2. 2.
    Choi YS, Kang JW, Hwang DK, Park SJ (2010) Recent advances in ZnO-based light-emitting diodes. IEEE Trans Electron Devices 57:26–41CrossRefGoogle Scholar
  3. 3.
    Liang HK, Yu SF, Yang HY (2010) Directional and controllable edge-emitting ZnO ultraviolet random laser diodes. Appl Phys Lett 96:101116CrossRefGoogle Scholar
  4. 4.
    Chopra KL, Major S, Pandya DK (1983) Transparent conductors—A status review. Thin Solid Films 102:1–46CrossRefGoogle Scholar
  5. 5.
    Hsu YK, Chen CY, Lin YG (2011) Polarity-dependent photoelectrochemical activity in ZnO nanostructures for solar water splitting. Electrochem Commun 13:1383–1386CrossRefGoogle Scholar
  6. 6.
    Wu H, Zhao X, Lib J, Dongc S (2017) The large-area preparation and photoelectrochemical properties of graphene/ZnO nanorod composite film. RSC Adv 7:55673–55679CrossRefGoogle Scholar
  7. 7.
    Naouar M, Ka I, Gaidi M, Alawadhi H, Bessais B, El Khakani MA (2014) Growth, structural and optoelectronic properties tuning of nitrogen-doped ZnO thin films synthesized by means of reactive pulsed laser deposition. Mater Res Bull 57:47–51CrossRefGoogle Scholar
  8. 8.
    Salem M, Akir S, Ghrib T, Daoudi K, Gaidi M (2016) Fe-doping effect on the photoelectrochemical properties enhancement of ZnO films. J Alloys Compd 685:107–113CrossRefGoogle Scholar
  9. 9.
    Chen G, Zhao X, Zhang H, Wang H, Liu F, Zhang X, Gao J, Zhao Y, Zhang C, Tao J (2016) Effect of substrate temperature on the structure, electrical and optical properties of Mo doped ZnO films. J Mater Sci Eng B 211:135–140CrossRefGoogle Scholar
  10. 10.
    Tan ST, Sun XW, Yu ZG, Wu P, Lo GQ (2007) p-type conduction in unintentional carbon-doped ZnO thin films. Appl Phys Lett 91:072101CrossRefGoogle Scholar
  11. 11.
    Fan JC, Sreekanth KM, Xie Z, Rao KV (2013) p-Type ZnO materials: theory, growth, properties and devices. Prog Mater Sci 58:874–985CrossRefGoogle Scholar
  12. 12.
    Zhou X, Li Y, Peng T, Xie W, Zhao X (2009) Synthesis, characterization and its visible-light-induced photocatalytic property of carbon doped ZnO. Mater Lett 63:1747–1749CrossRefGoogle Scholar
  13. 13.
    Lin Y, Hsu Y, Chen Y, Chen L, Chen S, Chen K (2012) Visible-light-driven photocatalytic carbon-doped porous ZnO nanoarchitectures for solar water-splitting. Nanoscale 4:6515–6519CrossRefPubMedGoogle Scholar
  14. 14.
    Liu S, Li C, Yu J, Xiang Q (2011) Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers. CrystEngComm 13:2533–2541CrossRefGoogle Scholar
  15. 15.
    Kumar SS, Venkateswarlu P, Rao VR, Rao GN (2013) Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int Nano Lett 3:30CrossRefGoogle Scholar
  16. 16.
    Ama OM, Arotiba OA (2017) Synthesis, characterisation and photoelectrochemical studies of Graphite/Zinc Oxide Nanocomposites with the application exfoliated electrodes for the degradation of methylene blue. Int J Nano Med Eng 2(8):145–151Google Scholar
  17. 17.
    Muthulingama KBB, Khan R, Lee IH, Uthirakumar P (2015) Improved daylight-induced photocatalytic performance and suppressed photocorrosion of N-doped ZnO decorated with carbon quantum dots. RSC Adv 5:46247–46251CrossRefGoogle Scholar
  18. 18.
    Chen J, Wen X, Shiand X, Pan R (2012) Synthesis of Zinc Oxide/Activated carbon Nano-Composites and photodegradation of Rhodamine B. Environ Eng Sci 29:392–398CrossRefGoogle Scholar
  19. 19.
    Akir S, Hamdi A, Ahmed A, Coffinier Y, Boukherroub R, Omrani D (2017) Facile synthesis of carbon-ZnO nanocomposite with enhanced visible light photocatalytic performance. Appl Surf Sci 400:461–470CrossRefGoogle Scholar
  20. 20.
    Salem M, Massoudi I, Akir S, Litaiem Y, Gaidi M, Khirouni K (2017) Photoelectrochemical and opto-electronic properties tuning of ZnO films: effect of Cu doping content. J Alloys Compd 722:313–320CrossRefGoogle Scholar
  21. 21.
    Guinier A (1963) X-ray diffraction. W.H. Freeman, San FranciscoGoogle Scholar
  22. 22.
    Wang C, Chen Z, He Y, Li L, Zhang D (2009) Structure, morphology and properties of Fe-doped ZnO films prepared by facing-target magnetron sputtering system. Appl Surf Sci 255:6881–6887CrossRefGoogle Scholar
  23. 23.
    Guo HL, Zhu Q, Wu XL, Jiang YF, Xie X, Xu AW (2015) Oxygen deficient ZnO1−x nanosheets with high visible light photocatalytic activity. Nanoscale 7:7216–7223CrossRefPubMedGoogle Scholar
  24. 24.
    Liu M, Kitai A, Mascher P (1992) Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese. J Lumin 54:35–42CrossRefGoogle Scholar
  25. 25.
    Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov MA, Doğan S, Avrutin V, Cho SJ, Morkoç H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301CrossRefGoogle Scholar
  26. 26.
    Schirmer OF, Zwingel D (1970) The yellow luminescence of zinc oxide. Solid State Commun 8:1559–1563CrossRefGoogle Scholar
  27. 27.
    Jiao J, Tang J, Gao W, Kuang D, Tong Y, Chen L (2015) Plasmonic silver nanoparticles matched with vertically aligned nitrogen-doped titanium dioxide nanotube arrays for enhanced photoelectrochemical activity. J Power Sources 274:464–470CrossRefGoogle Scholar
  28. 28.
    Gaidi M, Trabelsi K, Hajjaji A, Chourou ML, Alhazaa AN, Bessais B, El Khakani MA (2018) Optimizing the photochemical conversion of UV–vis light of silver-nanoparticles decorated TiO2 nanotubes based photoanodes. Nanotechnology 29:015703CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center of Advanced Research Materials, Research Institute of Sciences and EngineeringUniversity of SharjahSharjahUnited Arab Emirates
  2. 2.Laboratoire de Photovoltaique, Centre de Recherches et des Technologies de l’Energie, Technopole de Borj-CédriaHammam-LifTunisia
  3. 3.Laboratoire de physique des matériaux et nanomatériaux appliqués à l’environnement, Faculté des sciences de Gabes, Département de PhysiqueGabesTunisia
  4. 4.Centre National de Recherches en Sciences des Matériaux (CNRSM)Technopôle Borj CedriaSolimanTunisia
  5. 5.Department of Physics, College of ScienceImam Abdulrahman Bin Faisal UniversityCity of DammamSaudi Arabia
  6. 6.Laboratory of Physical Alloys (LPA), College of Science of DammamImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  7. 7.Laboratoire nanomatériaux et système pour les énergies renouvelables (LANSER), Centre de Recherches et des Technologies de l’Energie, Technopole de Borj-CédriaHammam-LifTunisia

Personalised recommendations