Journal of Solid State Electrochemistry

, Volume 22, Issue 11, pp 3507–3514 | Cite as

Fabrication and the electrochemical activation of network-like MnO2 nanoflakes as a flexible and large-area supercapacitor electrode

  • Saeed Mardi
  • Omran Moradlou
  • Alireza Z. MoshfeghEmail author
Original Paper


Porous network-like MnO2 thick films are successfully synthesized on a flexible stainless steel (SS) mesh using a simple and low-cost electrodeposition method followed by an electrochemical activation process. Morphology, chemical composition, and crystal structure of the prepared electrodes before and after the activation process are determined and compared by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) analyses. The results show that the implementation of the electrochemical activation process does not change the chemical composition and crystal structure of the films, but it influences the surface morphology of the MnO2 thick layer to a flaky nanostructure. Based on the electrochemical data analysis, the maximum specific capacitance of 1400 mF (381 F g−1) and 3700 mF (352 F g−1) are measured for small (2.6 cm2) and large (10 cm2) surface area electrodes, respectively. In addition, a flexible symmetric MnO2//MnO2 solid-state supercapacitor shows a capacitance of 0.3 F with about 98% retention at different bending angles from 0 to 360°.


Supercapacitor MnO2 Electrochemical activation Nanostructure Flexible 



The authors would like to thank Dr. M. Qorbani for valuable and useful discussions. Financial assistance of Research and Technology Council of Sharif University of Technology and partial support from Iran National Science Foundation through project number 940009 is greatly acknowledged.

Supplementary material

10008_2018_4060_MOESM1_ESM.docx (2.1 mb)
ESM 1 (DOCX 2118 kb)


  1. 1.
    Fong KD, Wang T, Smoukov SK (2017) Multidimensional performance optimization of conducting polymer-based supercapacitor electrodes. Sustainable Energy Fuels 1(9):1857–1874CrossRefGoogle Scholar
  2. 2.
    Ates M (2016) Graphene and its nanocomposites used as an active materials for supercapacitors. J Solid State Electrochem 20(6):1509–1526CrossRefGoogle Scholar
  3. 3.
    Pech D, Brunet M, Durou H, Huang P, Mochalin V, Gogotsi Y, Taberna PL, Simon P (2010) Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol 5(9):651–654CrossRefPubMedGoogle Scholar
  4. 4.
    Fan Y, Jiao W, Huang C (2018) Effect of the noncovalent functionalization of graphite nanoflakes on the performance of MnO2/C composites. J Appl Electrochem 48(2):187–199CrossRefGoogle Scholar
  5. 5.
    Zuo Y, Ni JJ, Song JM, Niu HL, Mao CJ, Zhang SY, Shen YH (2016) Synthesis of Co3O4/NiO nanofilms and their enhanced electrochemical performance for supercapacitor application. Appl Surf Sci 370:528–535CrossRefGoogle Scholar
  6. 6.
    Chen Y, Guan JH, Gan H, Chen BZ, Shi XC (2018) Electrochemical growth of α-MnO2 on carbon fibers for high-performance binder-free electrodes of supercapacitors. J Appl Electrochem 48(1):105–113CrossRefGoogle Scholar
  7. 7.
    Yang Y, Huang Q, Niu L, Wang D, Yan C, She Y, Zheng Z (2016) Waterproof, ultrahigh areal-capacitance, wearable supercapacitor fabrics. Adv Mater 29:1606679CrossRefGoogle Scholar
  8. 8.
    Xie S, Liu S, Cheng F, Lu X (2018) Recent advances toward achieving high-performance carbon fiber materials for supercapacitors. ChemElectroChem 5(4):571–582CrossRefGoogle Scholar
  9. 9.
    Chen GF, Li XX, Zhang LY, Li N, Ma TY, Liu ZQ (2016) A porous perchlorate-doped polypyrrole nanocoating on nickel nanotube arrays for stable wide-potential-window supercapacitors. Adv Mater 28(35):7680–7687CrossRefPubMedGoogle Scholar
  10. 10.
    Chen GF, Liu ZQ, Lin JM, Li N, Su YZ (2015) Hierarchical polypyrrole based composites for high performance asymmetric supercapacitors. J Power Sources 283:484–493CrossRefGoogle Scholar
  11. 11.
    Chen GF, Su YZ, Kuang PY, Liu ZQ, Chen DY, Wu X, Li N, Qiao SZ (2015) Polypyrrole shell@3D-Ni metal core structured electrodes for high-performance supercapacitors. Chem Eur J 21(12):4614–4621CrossRefPubMedGoogle Scholar
  12. 12.
    Liu ZQ, Chen GF, Zhou PL, Li N, Su YZ (2016) Building layered NixCo2x(OH)6x nanosheets decorated three-dimensional Ni frameworks for electrochemical applications. J Power Sources 317:1–9CrossRefGoogle Scholar
  13. 13.
    Su YZ, Xiao K, Li N, Liu ZQ, Qiao SZ (2014) Amorphous Ni(OH)2@ three-dimensional Ni core–shell nanostructures for high capacitance pseudocapacitors and asymmetric supercapacitors. J Mater Chem A 2(34):13845–13853CrossRefGoogle Scholar
  14. 14.
    Moradlou O, Ansarinejad H, Hosseinzadeh M, Kazemi H (2018) High-performance solid state asymmetric supercapacitor based on electrochemically decorated 3D network-like Co3O4 architecture on NiO nanoworms. J Alloys Compd 755:231–241CrossRefGoogle Scholar
  15. 15.
    Deng T, Zhang W, Arcelus O, Kim JG, Carrasco J, Yoo SJ, Zheng W, Wang J, Tian H, Zhang H, Cui X, Rojo T (2017) Atomic-level energy storage mechanism of cobalt hydroxide electrode for pseudocapacitors. Nat Commun 8:15194CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Qorbani M, Chou TC, Lee YH, Samireddi S, Naseri N, Ganguly A, Esfandiar A, Wang CH, Chen LC, Chen KH, Moshfegh AZ (2017) Multi-porous Co3O4 nanoflakes@sponge-like few-layer partially reduced graphene oxide hybrids: towards highly stable asymmetric supercapacitors. J Mater Chem A 5(24):12569–12577CrossRefGoogle Scholar
  17. 17.
    Zheng X, Han Z, Yang W, Qu F, Liu B, Wu X (2016) 3D Co3O4@MnO2 heterostructures grown on a flexible substrate and their applications in supercapacitor electrodes and photocatalysts. Dalton Trans 45(42):16850–16858CrossRefPubMedGoogle Scholar
  18. 18.
    Ingole SM, Navale ST, Navale YH, Dhole IA, Mane RS, Stadler FJ, Patil VB (2017) Galvanostatically electroplated MnO2 nanoplate-type electrode for potential electrochemical pseudocapacitor application. J Solid State Electrochem 21(6):1817–1826CrossRefGoogle Scholar
  19. 19.
    Hu Y, Wang J, Jiang X, Zheng Y, Chen Z (2013) Facile chemical synthesis of nanoporous layered δ-MnO2 thin film for high-performance flexible electrochemical capacitors. Appl Surf Sci 271:193–201CrossRefGoogle Scholar
  20. 20.
    Zhao L, Yu J, Li W, Wang S, Dai C, Wu J, Bai X, Zhi C (2014) Honeycomb porous MnO2 nanofibers assembled from radially grown nanosheets for aqueous supercapacitors with high working voltage and energy density. Nano Energy 4:39–48CrossRefGoogle Scholar
  21. 21.
    Sahay PP, Kushwaha AK (2017) Electrochemical supercapacitive performance of potentiostatically cathodic electrodeposited nanostructured MnO2 films. J Solid State Electrochem 21(8):2393–2405CrossRefGoogle Scholar
  22. 22.
    Chen W, Rakhi RB, Wang Q, Hedhili MN, Alshareef HN (2014) Morphological and electrochemical cycling effects in MnO2 nanostructures by 3D electron tomography. Adv Funct Mater 24(21):3130–3143CrossRefGoogle Scholar
  23. 23.
    Singu BS, Hong SE, Yoon KR (2017) Ultra-thin and ultra-long α-MnO2 nanowires for pseudocapacitor material. J Solid State Electrochem 21(11):3215–3220CrossRefGoogle Scholar
  24. 24.
    Wu Y, Liu S, Wang H, Wang X, Zhang X, Jin G (2013) A novel solvothermal synthesis of Mn3O4/graphene composites for supercapacitors. Electrochim Acta 90:210–218CrossRefGoogle Scholar
  25. 25.
    Kundu M, Liu L (2013) Direct growth of mesoporous MnO2 nanosheet arrays on nickel foam current collectors for high-performance pseudocapacitors. J Power Sources 243:676–681CrossRefGoogle Scholar
  26. 26.
    He Y, Chen W, Li X, Zhang Z, Fu J, Zhao C, Xie E (2013) Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7(1):174–182CrossRefPubMedGoogle Scholar
  27. 27.
    Chou TC, Doong RA, Hu CC, Zhang B, Su DS (2014) Hierarchically porous carbon with manganese oxides as highly efficient electrode for asymmetric supercapacitors. ChemSusChem 7(3):841–847CrossRefPubMedGoogle Scholar
  28. 28.
    He D, Liu G, Pang A, Jiang Y, Suo H, Zhao C (2017) A high-performance supercapacitor electrode based on tremella-like NiC2O4@NiO core/shell hierarchical nanostructures on nickel foam. Dalton Trans 46(6):1857–1863CrossRefPubMedGoogle Scholar
  29. 29.
    Zhang F, Yuan C, Zhu J, Wang J, Zhang X, Lou XWD (2013) Flexible films derived from electrospun carbon nanofibers incorporated with Co3O4 hollow nanoparticles as self-supported electrodes for electrochemical capacitors. Adv Funct Mater 23(31):3909–3915CrossRefGoogle Scholar
  30. 30.
    Fuertes AB, Sevilla M (2015) Hierarchical microporous/mesoporous carbon nanosheets for high-performance supercapacitors. ACS Appl Mater Interfaces 7(7):4344–4353CrossRefPubMedGoogle Scholar
  31. 31.
    Wu H, Yu G, Pan L, Liu N, McDowell MT, Bao Z, Cui Y (2013) Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun 4(1):1943CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang D, Dong QQ, Wang X, Yan W, Deng W, Shi LY (2013) Preparation of a three-dimensional ordered macroporous carbon nanotube/polypyrrole composite for supercapacitors and diffusion modelling. J Phys Chem C 117(40):20446–20455CrossRefGoogle Scholar
  33. 33.
    Narubayashi M, Chen Z, Hasegawa K, Noda S (2016) 50-100 μm-thick pseudocapacitive electrodes of MnO2 nanoparticles uniformly electrodeposited in carbon nanotube papers. RSC Adv 6(47):41496–41505CrossRefGoogle Scholar
  34. 34.
    Santolalla C, Chavez-Esquivel G, de los Reyes-Heredia JA, Alvarez-Ramirez J (2013) Fractal correlation analysis of x-ray diffraction patterns with broad background. Ind Eng Chem Res 52(24):8346–8353CrossRefGoogle Scholar
  35. 35.
    Gao J, Wang X, Zhang Y, Liu J, Lu Q, Chen M, Bai Y (2016) Preparation and supercapacitive performance of nanosized manganese dioxide/ordered mesoporous carbon composites. Electrochim Acta 192:234–242CrossRefGoogle Scholar
  36. 36.
    Qorbani M, Naseri N, Moshfegh AZ (2015) Hierarchical Co3O4/Co(OH)2 nanoflakes as a supercapacitor electrode: experimental and semi-empirical model. ACS Appl Mater Interfaces 7(21):11172–11179CrossRefPubMedGoogle Scholar
  37. 37.
    El-Kady MF, Shao Y, Kaner RB (2016) Graphene for batteries, supercapacitors and beyond. Nat Rev Mater 1(7):16033CrossRefGoogle Scholar
  38. 38.
    Hu L, Chen W, Xie X, Liu N, Yang Y, Wu H, Yao Y, Pasta M, Alshareef HN, Cui Y (2011) Symmetrical MnO2–carbon nanotube–textile nanostructures for wearable pseudocapacitors with high mass loading. ACS Nano 5(11):8904–8913CrossRefPubMedGoogle Scholar
  39. 39.
    Kang J, Chen L, Hou Y, Li C, Fujita T, Lang X, Hirata A, Chen M (2013) Electroplated thick manganese oxide films with ultrahigh capacitance. Adv Energy Mater 3(7):857–863CrossRefGoogle Scholar
  40. 40.
    Gogotsi Y, Simon P (2011) True performance metrics in electrochemical energy storage. Science 334(6058):917–918CrossRefPubMedGoogle Scholar
  41. 41.
    Cao J, Wang Y, Zhou Y, Ouyang JH, Jia D, Guo L (2013) High voltage asymmetric supercapacitor based on MnO2 and graphene electrodes. J Electroanal Chem 689:201–206CrossRefGoogle Scholar
  42. 42.
    Cheng Y, Lu S, Zhang H, Varanasi CV, Liu J (2012) Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano Lett 12(8):4206–4211CrossRefPubMedGoogle Scholar
  43. 43.
    Cottineau T, Toupin M, Delahaye T, Brousse T, Bélanger D (2005) Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Appl Phys A Mater Sci Process 82:599–606CrossRefGoogle Scholar
  44. 44.
    Wu ZS, Ren W, Wang DW, Li F, Liu B, Cheng HM (2010) High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4(10):5835–5842CrossRefPubMedGoogle Scholar
  45. 45.
    Zhou H, Zou X, Zhang Y (2016) Fabrication of TiO2@MnO2 nanotube arrays by pulsed electrodeposition and their application for high-performance supercapacitors. Electrochim Acta 192:259–267CrossRefGoogle Scholar
  46. 46.
    Li L, Hu ZA, An N, Yang YY, Li ZM, Wu HY (2014) Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability. J Phys Chem C 118(40):22865–22872CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsSharif University of TechnologyTehranIran
  2. 2.Department of Chemistry, Faculty of Physics and ChemistryAlzahra UniversityTehranIran
  3. 3.Institute for Nanoscience and NanotechnologySharif University of TechnologyTehranIran

Personalised recommendations