Journal of Solid State Electrochemistry

, Volume 22, Issue 11, pp 3557–3568 | Cite as

Reduced graphene oxide-encapsulated mesoporous silica as sulfur host for lithium–sulfur battery

  • Hong Pan
  • Xiaoxiao HuangEmail author
  • Rui Zhang
  • Tao Zhang
  • Yanting Chen
  • Tuan K. A. Hoang
  • Guangwu Wen
Original Paper


With up to fivefold higher in energy density vs. lithium-ion battery, lithium–sulfur (Li–S) battery is a compelling energy storage system, complemented by a very low cost of sulfur. However, current Li–S cells face the capacity decay caused by the dissolution of lithium polysulfides. In this work, a new material concept, namely the “layer @ adsorbent” is introduced to address the capacity fading problem. This architecture utilizes mesoporous SiO2 holding sulfur and polysulfides and the whole S fused SiO2 was intimately encapsulated by reduced graphene oxide (RGO). Benefiting from the enhanced capillary force from SiO2, as well as the improved conductivity from RGO chamber, this “layer @ adsorbent” architecture could easily spread and adsorb polysulfides. The initial discharge capacity is approaching its theoretical capacity (1567 mAh g−1 at 0.1 C). A stable cycle performance over 500 cycles is demonstrated with the capacity loss of merely about 0.05% per cycle. Additionally, the cathode with higher sulfur content (67%) delivers a stable reversible capacity (400 mAh g−1) over 500 cycles at higher current of 2 C.

Graphical abstract


Lithium–sulfur battery Cathode Mesoporous silica Graphene Polysulfide adsorption 



This work was financially supported by the National Science Foundation of China (NSFC, Grant numbers 51372052, 51772060, and 51621091). Data is available from the Online Resource or from the author.

Supplementary material

10008_2018_4059_MOESM1_ESM.docx (2.6 mb)
ESM 1 (DOCX 2680 kb)


  1. 1.
    Keyu X, You Y, Kai Y, Wei L, Kun Z, Fei X, Mao Y, Shanming K, Chao S, Xierong Z, Xiaoli F, Bingqing W (2017) Ferroelectric-enhanced polysulfide trapping for lithium–sulfur battery improvement. Adv Mater 29(6):1604724CrossRefGoogle Scholar
  2. 2.
    Chen J, Henderson WA, Pan H, Perdue BR, Cao R, Hu JZ, Wan C, Han KS, Mueller KT, Zhang JG (2017) Improving lithium-sulfur battery performance under lean electrolyte through nanoscale confinement in soft swellable gels. Nano Lett 17(5):3061–3067CrossRefPubMedGoogle Scholar
  3. 3.
    Hong-Jie P, Jia-Qi H, Meng-Qiang Z, Qiang Z, Xin-Bing C, Xin-Yan L, Wei-Zhong Q, Fei W (2014) Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries. Adv Funct Mater 24(19):2772–2781CrossRefGoogle Scholar
  4. 4.
    Lee JS, Manthiram A (2017) Hydroxylated N-doped carbon nanotube-sulfur composites as cathodes for high-performance lithium-sulfur batteries. J Power Sources 343:54–59CrossRefGoogle Scholar
  5. 5.
    Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Guo J, Cairns EJ, Zhang Y (2011) Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Amer Chem Soc 133(46):18522–18525CrossRefGoogle Scholar
  6. 6.
    Yuan-Li D, Peter K, Kersten H, Vap A, Joachim M, Yan Y (2016) Lithium–sulfur batteries: facile solid-state growth of 3D well-interconnected nitrogen-rich carbon nanotube–graphene hybrid architectures for lithium–sulfur batteries. Adv Funct Mater 26(7):1144–1144CrossRefGoogle Scholar
  7. 7.
    Seh ZW, Wang H, Hsu P-C, Zhang Q, Li W, Zheng G, Yao H, Cui Y (2014) Facile synthesis of Li2S-polypyrrole composite structures for high-performance Li2S cathodes. Energy Environ Sci 7(2):672–676CrossRefGoogle Scholar
  8. 8.
    Tao X, Wang J, Liu C, Wang H, Yao H, Zheng G, Seh ZW, Cai Q, Li W, Zhou G (2016) Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat Commun 7:11203CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chen T, Cheng B, Zhu G, Chen R, Hu Y, Ma L, Lv H, Wang Y, Liang J, Tie Z (2016) Highly efficient retention of polysulfides in “sea urchin”-like carbon nanotube/nanopolyhedra superstructures as cathode material for ultralong-life lithium–sulfur batteries. Nano Lett 17(1):437–444CrossRefPubMedGoogle Scholar
  10. 10.
    Liang X, Wen Z, Liu Y, Zhang H, Huang L, Jin J (2011) Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable polymer Li/S battery. J Power Sources 196(7):3655–3658CrossRefGoogle Scholar
  11. 11.
    Schuster J, He G, Mandlmeier B, Yim T, Lee KT, Bein T, Nazar LF (2012) Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angew Chem Int Ed 51(15):3591–3595CrossRefGoogle Scholar
  12. 12.
    Li X, Cao Y, Qi W, Saraf LV, Xiao J, Nie Z, Mietek J, Zhang J-G, Schwenzer B, Liu J (2011) Optimization of mesoporous carbon structures for lithium-sulfur battery applications. J Mater Chem 21(41):16603–16610CrossRefGoogle Scholar
  13. 13.
    He G, Evers S, Liang X, Cuisinier M, Garsuch A, Nazar LF (2013) Tailoring porosity in carbon nanospheres for lithium–sulfur battery cathodes. ACS Nano 7(12):10920–10930CrossRefPubMedGoogle Scholar
  14. 14.
    Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8(6):500–506CrossRefPubMedGoogle Scholar
  15. 15.
    Chen S-R, Zhai Y-P, Xu G-L, Jiang Y-X, Zhao D-Y, Li J-T, Huang L, Sun S-G (2011) Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium–sulfur battery. Electrochim Acta 56(26):9549–9555CrossRefGoogle Scholar
  16. 16.
    Golodnitsky D, Strauss E, Peled E, Greenbaum S (2015) Review—on order and disorder in polymer electrolytes. J Electrochem Soc 162(14):A2551–A2566CrossRefGoogle Scholar
  17. 17.
    Tao X, Wang J, Ying Z, Cai Q, Zheng G, Gan Y, Huang H, Xia Y, Liang C, Zhang W, Cui Y (2014) Strong sulfur binding with conducting Magnéli-phase TinO2n–1 nanomaterials for improving lithium–sulfur batteries. Nano Lett 14(9):5288–5294CrossRefPubMedGoogle Scholar
  18. 18.
    Liang X, Kwok CY, Lodi-Marzano F, Pang Q, Cuisinier M, Huang H, Hart CJ, Houtarde D, Kaup K, Sommer H, Brezesinski T, Janek J, Nazar LF (2016) Tuning transition metal oxide-sulfur interactions for long life Lithium sulfur batteries: the “goldilocks” principle. Adv. Energy Mater 6(6):1501636CrossRefGoogle Scholar
  19. 19.
    Qian X, Jin L, Zhao D, Yang X, Wang S, Shen X, Rao D, Yao S, Zhou Y, Xi X (2016) Ketjen black-MnO composite coated separator for high performance rechargeable lithium-sulfur battery. Electrochim Acta 192:346–356CrossRefGoogle Scholar
  20. 20.
    Ji X, Evers S, Black R, Nazar LF (2011) Stabilizing lithium–sulphur cathodes using polysulphide reservoirs. Nat Commun 2(1):325CrossRefPubMedGoogle Scholar
  21. 21.
    Pang Q, Kundu D, Cuisinier M, Nazar L (2014) Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat Commun 5(1):4759CrossRefPubMedGoogle Scholar
  22. 22.
    Park JH, Choi KM, Lee DK, Moon BC, Shin SR, Song M-K, Kang JK (2016) Encapsulation of redox polysulphides via chemical interaction with nitrogen atoms in the organic linkers of metal-organic framework nanocrystals. Sci Rep 6(1):25555CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Peng HJ, Zhang ZW, Huang JQ, Zhang G, Xie J, Xu WT, Shi JL, Chen X, Cheng XB, Zhang Q (2016) A cooperative interface for highly efficient lithium–sulfur batteries. Adv Mater 28(43):9551–9558CrossRefPubMedGoogle Scholar
  24. 24.
    Wang Z, Wang B, Yang Y, Cui Y, Wang Z, Chen B, Qian G (2015) Mixed-metal–organic framework with effective Lewis acidic sites for sulfur confinement in high-performance lithium–sulfur batteries. ACS Appl Mater Interfaces 7(37):20999–21004CrossRefPubMedGoogle Scholar
  25. 25.
    Wu H, Tang Q, Fan H, Liu Z, Hu A, Zhang S, Deng W, Chen X (2017) Dual-confined and hierarchical-porous graphene/C/SiO2 hollow microspheres through spray drying approach for lithium-sulfur batteries. Electrochim Acta 255:179–186CrossRefGoogle Scholar
  26. 26.
    Wei P, Fan M, Chen H, Chen D, Li C, Shu K, Lv C (2016) Ternary graphene/sulfur/SiO2 composite as stable cathode for high performance lithium/sulfur battery. Int J Hydrog Energy 41(3):1819–1827CrossRefGoogle Scholar
  27. 27.
    Rehman S, Guo S, Hou Y (2016) Rational Design of Si/SiO2@hierarchical porous carbon spheres as efficient polysulfide reservoirs for high-performance Li-S battery. Adv Mater 28(16):3167–3172CrossRefPubMedGoogle Scholar
  28. 28.
    Matsushima T, Ono K (1958) Fundamental research on sulfur. (V): some interfacial phenomena between liquid sulfur, water, solid and gas. Bulletin of the Research Institute of Mineral Dressing & Metallurgy Tohoku University 13:147–157Google Scholar
  29. 29.
    Nyfeler D, Hoffmann C, Armbruster T, Kunz M, Libowitzky E (1997) Orthorhombic Jahn-teller distortion and Si-OH in mozartite, CaMn3+O[SiO3OH]: a single-crystal X-ray, FTIR, and structure modeling study. Am Mineral 82(9–10):841–848CrossRefGoogle Scholar
  30. 30.
    Erdem B, Hunsicker RA, Simmons GW, Sudol ED, Dimonie VL, El-Aasser MS (2001) XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir 17(9):2664–2669CrossRefGoogle Scholar
  31. 31.
    Yu X, Manthiram A (2015) A class of polysulfide catholytes for lithium-sulfur batteries: energy density, cyclability, and voltage enhancement. Phys Chem Chem Phys 17(3):2127–2136CrossRefPubMedGoogle Scholar
  32. 32.
    Li Z, Zhang J, Guan B, Wang D, Liu L-M, Lou XW (2016) A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium–sulfur batteries. Nat Commun 7:13065CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Xiao L, Arnd G, NL F (2015) Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angew Chem 127(13):3979–3983CrossRefGoogle Scholar
  34. 34.
    Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar LF (2015) A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat Commun 6(1):5682CrossRefPubMedGoogle Scholar
  35. 35.
    Xiong S, Xie K, Diao Y, Hong X (2013) On the role of polysulfides for a stable solid electrolyte interphase on the lithium anode cycled in lithium-sulfur batteries. J Power Sources 236:181–187CrossRefGoogle Scholar
  36. 36.
    Nakai H, Kubota T, Kita A, Kawashima A (2011) Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes. J Electrochem Soc 158(7):A798–A801CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hong Pan
    • 1
    • 2
  • Xiaoxiao Huang
    • 1
    • 2
    Email author
  • Rui Zhang
    • 1
  • Tao Zhang
    • 1
  • Yanting Chen
    • 1
  • Tuan K. A. Hoang
    • 3
  • Guangwu Wen
    • 4
  1. 1.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.Key Laboratory of Advanced Structural Functional Integration Materials & Green Manufacturing TechnologyHarbin Institute of TechnologyHarbinChina
  3. 3.Department of Chemical Engineering and Waterloo Institute of NanotechnologyUniversity of WaterlooWaterlooCanada
  4. 4.Shandong Industrial Ceramics Research & Design Institute CO. LtdShandong University of TechnologyZiboChina

Personalised recommendations